Answer
Verified
449.4k+ views
Hint:Try to remember the various ray diagrams for a convex lens, the position of the object and its image for all cases. You will get a faint idea of the positions of object and image given in the questions and will be able to answer the given questions.
Formula Used:
Magnification, $m = \dfrac{v}{u}$ where, $v$ is the image distance and $u$ is the object distance
Complete Step by Step Solution:
For part (a), we will look at the given readings. We can see in the reading number 3 that the object and image distance are equal (when taken face value). Also, we know that in case of a convex lens, when the object is at centre of curvature, the image distance and object distance are equal. Therefore, the centre of curvature of the given lens is at $40cm$ . Since centre of curvature is always twice the focal length, we can say that the focal length of the given lens is $20cm$
For part (b), we have the focal length of the lens equal to $20cm$ therefore, it is clear that for reading 6, the object is kept between focus and the centre of lens, often called O. remember that in this case, the image formed is virtual and is on the left side of the lens. Hence, the image distance should be negative, but it is given to be positive. Hence, reading 6 is incorrect.
For part (c), we will consider the reading 2 as given in question and use the above-mentioned formula for magnification. We have, $v = 30cm$ and $u = - 60cm$
Therefore, $m = \dfrac{{30}}{{ - 60}} = - \dfrac{1}{2} = - 0.5$ (The minus sign indicates the image is inverted)
Hence, the image is real, inverted and diminished.
Note:You need to study all the cases of convex/concave lens/mirror to ace at questions like these. Studying all the cases will help you relate the given values and hence you will be able to find answers more quickly and efficiently.
Formula Used:
Magnification, $m = \dfrac{v}{u}$ where, $v$ is the image distance and $u$ is the object distance
Complete Step by Step Solution:
For part (a), we will look at the given readings. We can see in the reading number 3 that the object and image distance are equal (when taken face value). Also, we know that in case of a convex lens, when the object is at centre of curvature, the image distance and object distance are equal. Therefore, the centre of curvature of the given lens is at $40cm$ . Since centre of curvature is always twice the focal length, we can say that the focal length of the given lens is $20cm$
For part (b), we have the focal length of the lens equal to $20cm$ therefore, it is clear that for reading 6, the object is kept between focus and the centre of lens, often called O. remember that in this case, the image formed is virtual and is on the left side of the lens. Hence, the image distance should be negative, but it is given to be positive. Hence, reading 6 is incorrect.
For part (c), we will consider the reading 2 as given in question and use the above-mentioned formula for magnification. We have, $v = 30cm$ and $u = - 60cm$
Therefore, $m = \dfrac{{30}}{{ - 60}} = - \dfrac{1}{2} = - 0.5$ (The minus sign indicates the image is inverted)
Hence, the image is real, inverted and diminished.
Note:You need to study all the cases of convex/concave lens/mirror to ace at questions like these. Studying all the cases will help you relate the given values and hence you will be able to find answers more quickly and efficiently.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE