Answer
Verified
417.9k+ views
Hint: The rate of cooling of a body is directly proportional to the difference in temperature between the body and the surrounding area, according to Newton's cooling, provided that the temperature difference is very small. Study each law given in the alternatives and which fits Newton's law.
Formula used:
$\dfrac{d Q}{d t}=e \sigma\left(T^{4}-T_{0}^{4}\right)$
Complete answer:
The rate of cooling of a body is directly proportional to the difference in temperature between the body and the surrounding area, according to Newton's cooling, provided that the temperature difference is very small.
i.e. $\dfrac{d Q}{d t} \propto\left(\theta-\theta_{0}\right)$
Here, $\theta$ is the temperature of the cooling body and $\theta_{0}$ is the temperature of the surrounding.
Newton's law cooling is a special case of Stefan-Boltzmann's law where the temperature difference of the body and the surrounding is very small.
Let's prove the above statement.
According to Stefan-Boltzmann's law, the rate of cooling of a body is given as $\dfrac{d \mathrm{Q}}{d t}=e \sigma\left(T^{4}-T_{0}^{4}\right)$..... (ii).
Here, e is the emissivity of the body, $\sigma$ is Stefan-Boltzmann's constant, $T$ is the temperature of the cooling body and $T_{0}$
is the temperature of the surrounding.
Suppose the temperature difference of the body and the surrounding is $\Delta T=T-T_{0}$.
$\Rightarrow T=T_{0}+\Delta T$
Substitute the value of $T$ in equation (ii).
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(\left(T_{0}+\Delta T\right)^{4}-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4}-T_{0}^{4}\right) \ldots . .$ (iii).
When we have a term $(1+x)^{4}, x$ is a very small number (close to zero), the term is approximately equal to $(1+n x)$.
i.e. $(1+x)^{n} \approx 1+n x$.
Consider the term $\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4}$ Since $\Delta T$ is very small, the ratio $\dfrac{\Delta T}{T_{0}}$ is also very small. Hence, $\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4} \approx 1+4 \dfrac{\Delta T}{T_{0}}$
Substitute this value in (iii). $\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}\left(1+4 \dfrac{\Delta T}{T_{0}}\right)-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}+4 \Delta T T_{0}^{3}-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(4 \Delta T T_{0}^{3}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma 4 T_{0}^{3}\left(T-T_{0}\right)$
Since $e \sigma 4 T_{0}^{3}$ is a constant value, $\dfrac{d Q}{d t} \propto\left(T-T_{0}\right)$
Hence, proved that the Stefan-Boltzmann's law is the same as that of Newton's law of cooling for small temperature difference.
Note:
Let us understand what we are told by the other laws given in the options.
(I) Kirchhoff’s law: it states that, for all surfaces, the ratio of emissive power to absorptive power is the same on the same surface. Temperature and is equal at that temperature to the emissive power of a perfectly black body.
(ii) Wien's law: According to this law, the wavelength product for which a black body emits maximum intensity radiation and the body temperature is constant.
Formula used:
$\dfrac{d Q}{d t}=e \sigma\left(T^{4}-T_{0}^{4}\right)$
Complete answer:
The rate of cooling of a body is directly proportional to the difference in temperature between the body and the surrounding area, according to Newton's cooling, provided that the temperature difference is very small.
i.e. $\dfrac{d Q}{d t} \propto\left(\theta-\theta_{0}\right)$
Here, $\theta$ is the temperature of the cooling body and $\theta_{0}$ is the temperature of the surrounding.
Newton's law cooling is a special case of Stefan-Boltzmann's law where the temperature difference of the body and the surrounding is very small.
Let's prove the above statement.
According to Stefan-Boltzmann's law, the rate of cooling of a body is given as $\dfrac{d \mathrm{Q}}{d t}=e \sigma\left(T^{4}-T_{0}^{4}\right)$..... (ii).
Here, e is the emissivity of the body, $\sigma$ is Stefan-Boltzmann's constant, $T$ is the temperature of the cooling body and $T_{0}$
is the temperature of the surrounding.
Suppose the temperature difference of the body and the surrounding is $\Delta T=T-T_{0}$.
$\Rightarrow T=T_{0}+\Delta T$
Substitute the value of $T$ in equation (ii).
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(\left(T_{0}+\Delta T\right)^{4}-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4}-T_{0}^{4}\right) \ldots . .$ (iii).
When we have a term $(1+x)^{4}, x$ is a very small number (close to zero), the term is approximately equal to $(1+n x)$.
i.e. $(1+x)^{n} \approx 1+n x$.
Consider the term $\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4}$ Since $\Delta T$ is very small, the ratio $\dfrac{\Delta T}{T_{0}}$ is also very small. Hence, $\left(1+\dfrac{\Delta T}{T_{0}}\right)^{4} \approx 1+4 \dfrac{\Delta T}{T_{0}}$
Substitute this value in (iii). $\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}\left(1+4 \dfrac{\Delta T}{T_{0}}\right)-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(T_{0}^{4}+4 \Delta T T_{0}^{3}-T_{0}^{4}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma\left(4 \Delta T T_{0}^{3}\right)$
$\Rightarrow \dfrac{d Q}{d t}=e \sigma 4 T_{0}^{3}\left(T-T_{0}\right)$
Since $e \sigma 4 T_{0}^{3}$ is a constant value, $\dfrac{d Q}{d t} \propto\left(T-T_{0}\right)$
Hence, proved that the Stefan-Boltzmann's law is the same as that of Newton's law of cooling for small temperature difference.
Note:
Let us understand what we are told by the other laws given in the options.
(I) Kirchhoff’s law: it states that, for all surfaces, the ratio of emissive power to absorptive power is the same on the same surface. Temperature and is equal at that temperature to the emissive power of a perfectly black body.
(ii) Wien's law: According to this law, the wavelength product for which a black body emits maximum intensity radiation and the body temperature is constant.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Derive an expression for drift velocity of free electrons class 12 physics CBSE
Which are the Top 10 Largest Countries of the World?
Write down 5 differences between Ntype and Ptype s class 11 physics CBSE
The energy of a charged conductor is given by the expression class 12 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Derive an expression for electric field intensity due class 12 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Derive an expression for electric potential at point class 12 physics CBSE