What are the angles of rotation for a 20-gon?
Answer
Verified
419.1k+ views
Hint: To find the angle of rotation for this polygon, we will draw a small circle inside the polygon. We will divide the central angle of a circle by the number of sides of the polygon to get the angle of rotation for the polygon.
A rotation is a transformation that turns every point of a given figure through a specified angle, in a particular direction. Angles are usually measured in degrees, radians, gons, and turns.
Complete step by step solution:
We have a regular polygon with 20 sides. This means that the central angle is divided into 20 equal parts. Constructing a small circle inside the polygon, we have the required figure.
Now, since the central angle of the circle is ${{360}^{\circ }}$ , it is equally divided into 20 equal parts. So, the angle of rotation will be given by
$\begin{align}
& \dfrac{{{360}^{\circ }}}{20} \\
& ={{18}^{\circ }} \\
\end{align}$
This means that the angle subtended by each side of a 20-sided regular polygon at the center is ${{18}^{\circ }}$.
Note: Kindly note that there is a difference between angle of rotation and interior angle of a polygon. While the interior angle of a polygon is the angle contained between two sides of a polygon, angle of rotation is the angle subtended by a side at the center of the polygon.
For a n-sided polygon
Sum of interior angles$={{180}^{\circ }}\left( n-2 \right)$
Angle of rotation$=\dfrac{{{360}^{\circ }}}{n}$
A rotation is a transformation that turns every point of a given figure through a specified angle, in a particular direction. Angles are usually measured in degrees, radians, gons, and turns.
Complete step by step solution:
We have a regular polygon with 20 sides. This means that the central angle is divided into 20 equal parts. Constructing a small circle inside the polygon, we have the required figure.
Now, since the central angle of the circle is ${{360}^{\circ }}$ , it is equally divided into 20 equal parts. So, the angle of rotation will be given by
$\begin{align}
& \dfrac{{{360}^{\circ }}}{20} \\
& ={{18}^{\circ }} \\
\end{align}$
This means that the angle subtended by each side of a 20-sided regular polygon at the center is ${{18}^{\circ }}$.
Note: Kindly note that there is a difference between angle of rotation and interior angle of a polygon. While the interior angle of a polygon is the angle contained between two sides of a polygon, angle of rotation is the angle subtended by a side at the center of the polygon.
For a n-sided polygon
Sum of interior angles$={{180}^{\circ }}\left( n-2 \right)$
Angle of rotation$=\dfrac{{{360}^{\circ }}}{n}$
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE