Answer
Verified
460.5k+ views
Hint: We need to arrange these fractions in ascending order and all these fractions have different denominators. To compare the fractions, we need to have the same denominators for all the fractions. As they are different here, we will take the LCM of all the denominators and multiply the denominator and the numerator by the same number such that after multiplication, the denominator becomes equal to the LCM that we calculated. Then we will compare the fractions and arrange them in ascending order. This will give us our answer.
Complete step by step answer:
Now, we have the fractions $\dfrac{3}{7},\dfrac{4}{5},\dfrac{7}{9},\dfrac{1}{2}$
We will now take the LCM of the denominators, i.e. , the LCM of 7,5,9 and 2.
Now, we can see that these numbers are co-prime (co-prime numbers are the numbers which do not have any common factor except for 1) and the LCM of co-prime numbers is equal to their product. Thus, the LCM of these numbers will be equal to the product of all these numbers.
Thus, the LCM is given as:
$\begin{align}
& \Rightarrow LCM=7\times 5\times 9\times 2 \\
& \Rightarrow LCM=630 \\
\end{align}$
Thus, we will multiply the denominators and numerators of all the fractions with such a number that the denominator becomes ‘630’.
Now, we will make the denominators of all the fractions the same. So, we will need to multiply the numerator and denominator by 90 in $\dfrac{3}{7}$ , 126 in $\dfrac{4}{5}$, 70 in $\dfrac{7}{9}$ and by 315 in $\dfrac{1}{2}$.
Thus, the fractions will become:
$\begin{align}
& \dfrac{3\times 90}{7\times 90},\dfrac{4\times 126}{5\times 126},\dfrac{7\times 70}{9\times 70},\dfrac{1\times 315}{2\times 315} \\
& \Rightarrow \dfrac{270}{630},\dfrac{504}{630},\dfrac{490}{630},\dfrac{315}{630} \\
\end{align}$
Now that we have made the denominators the same for all the fractions, we can compare them by comparing the numerators. Larger the numerator, larger will be fraction.
On comparing we get:
$\begin{align}
& \dfrac{270}{630}<\dfrac{315}{630}<\dfrac{490}{630}<\dfrac{504}{630} \\
& \Rightarrow \dfrac{3}{7}<\dfrac{1}{2}<\dfrac{7}{9}<\dfrac{4}{5} \\
\end{align}$
Thus, the fractions in ascending order will come out as:
$\dfrac{3}{7},\dfrac{1}{2},\dfrac{7}{9},\dfrac{4}{5}$
So, the correct answer is “Option B”.
Note: We can also solve this question by solving the fractions and converting them to their decimal expansions and comparing those expansions. It will be done as follows:
Decimal expansion of $\dfrac{3}{7}=0.428$
Decimal expansion of $\dfrac{4}{5}=0.8$
Decimal expansion of $\dfrac{7}{9}=0.777$
Decimal expansion of $\dfrac{1}{2}=0.5$
On comparing the decimal expansions, we will get:
$\dfrac{3}{7}<\dfrac{1}{2}<\dfrac{7}{9}<\dfrac{4}{5}$
Thus, the arranged fractions will be:
$\dfrac{3}{7},\dfrac{1}{2},\dfrac{7}{9},\dfrac{4}{5}$
Thus the answer is the same in both cases.
Complete step by step answer:
Now, we have the fractions $\dfrac{3}{7},\dfrac{4}{5},\dfrac{7}{9},\dfrac{1}{2}$
We will now take the LCM of the denominators, i.e. , the LCM of 7,5,9 and 2.
Now, we can see that these numbers are co-prime (co-prime numbers are the numbers which do not have any common factor except for 1) and the LCM of co-prime numbers is equal to their product. Thus, the LCM of these numbers will be equal to the product of all these numbers.
Thus, the LCM is given as:
$\begin{align}
& \Rightarrow LCM=7\times 5\times 9\times 2 \\
& \Rightarrow LCM=630 \\
\end{align}$
Thus, we will multiply the denominators and numerators of all the fractions with such a number that the denominator becomes ‘630’.
Now, we will make the denominators of all the fractions the same. So, we will need to multiply the numerator and denominator by 90 in $\dfrac{3}{7}$ , 126 in $\dfrac{4}{5}$, 70 in $\dfrac{7}{9}$ and by 315 in $\dfrac{1}{2}$.
Thus, the fractions will become:
$\begin{align}
& \dfrac{3\times 90}{7\times 90},\dfrac{4\times 126}{5\times 126},\dfrac{7\times 70}{9\times 70},\dfrac{1\times 315}{2\times 315} \\
& \Rightarrow \dfrac{270}{630},\dfrac{504}{630},\dfrac{490}{630},\dfrac{315}{630} \\
\end{align}$
Now that we have made the denominators the same for all the fractions, we can compare them by comparing the numerators. Larger the numerator, larger will be fraction.
On comparing we get:
$\begin{align}
& \dfrac{270}{630}<\dfrac{315}{630}<\dfrac{490}{630}<\dfrac{504}{630} \\
& \Rightarrow \dfrac{3}{7}<\dfrac{1}{2}<\dfrac{7}{9}<\dfrac{4}{5} \\
\end{align}$
Thus, the fractions in ascending order will come out as:
$\dfrac{3}{7},\dfrac{1}{2},\dfrac{7}{9},\dfrac{4}{5}$
So, the correct answer is “Option B”.
Note: We can also solve this question by solving the fractions and converting them to their decimal expansions and comparing those expansions. It will be done as follows:
Decimal expansion of $\dfrac{3}{7}=0.428$
Decimal expansion of $\dfrac{4}{5}=0.8$
Decimal expansion of $\dfrac{7}{9}=0.777$
Decimal expansion of $\dfrac{1}{2}=0.5$
On comparing the decimal expansions, we will get:
$\dfrac{3}{7}<\dfrac{1}{2}<\dfrac{7}{9}<\dfrac{4}{5}$
Thus, the arranged fractions will be:
$\dfrac{3}{7},\dfrac{1}{2},\dfrac{7}{9},\dfrac{4}{5}$
Thus the answer is the same in both cases.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE