![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
What is the bond angle in $Cl{{O}_{2}}^{-}$ (OClO)?
A. $90{}^\circ $
B. $120{}^\circ $
C. $105{}^\circ $
D. $111{}^\circ $
Answer
123.3k+ views
Hint: Think about the geometry of the chlorite ion and how the chlorine accommodates the lone pairs and bond pairs. Take into consideration the types of repulsion between lone pairs, bond pairs, double bonds, and charged particles.
Complete step by step solution:
We know that the chlorine atom has 2 lone pairs in the hybridized orbitals, it forms bonds with two oxygen atoms. Thus, the geometry of this molecule will be bent with respect to the atoms involved and tetrahedral with all the atoms as well as lone pairs involved. The structure is as follows:
![](https://www.vedantu.com/question-sets/72445eef-241a-4422-b598-51eea99964246335135121288826779.png)
We know that the bond angle between tetrahedral structures is usually $109.47{}^\circ $ but taking into account the presence of lone pair repulsion this may change. Here, the repulsion between the lone pairs on the $O$ atoms, the double bonds present and the charge on the $O$ atom is greater than the repulsion between bond pairs. This will lead to an angle that is larger than expected. The repulsion between double bonds has a similar magnitude as that of the repulsion between lone pairs, but the other factors involved overcome this and increase the bond angle.
Hence, the answer is ‘D. $111{}^\circ $’
Note: Remember that going by superficial information may cause you to go wrong. Just the presence of the lone pairs on the chlorine atom will lead you to believe that the bond angle will decrease from the standard $109.47{}^\circ $ in tetrahedral structures to $105{}^\circ $. But other factors should also be taken into consideration. Draw the diagram and analyse it carefully before marking the correct answer.
Complete step by step solution:
We know that the chlorine atom has 2 lone pairs in the hybridized orbitals, it forms bonds with two oxygen atoms. Thus, the geometry of this molecule will be bent with respect to the atoms involved and tetrahedral with all the atoms as well as lone pairs involved. The structure is as follows:
![](https://www.vedantu.com/question-sets/72445eef-241a-4422-b598-51eea99964246335135121288826779.png)
We know that the bond angle between tetrahedral structures is usually $109.47{}^\circ $ but taking into account the presence of lone pair repulsion this may change. Here, the repulsion between the lone pairs on the $O$ atoms, the double bonds present and the charge on the $O$ atom is greater than the repulsion between bond pairs. This will lead to an angle that is larger than expected. The repulsion between double bonds has a similar magnitude as that of the repulsion between lone pairs, but the other factors involved overcome this and increase the bond angle.
Hence, the answer is ‘D. $111{}^\circ $’
Note: Remember that going by superficial information may cause you to go wrong. Just the presence of the lone pairs on the chlorine atom will lead you to believe that the bond angle will decrease from the standard $109.47{}^\circ $ in tetrahedral structures to $105{}^\circ $. But other factors should also be taken into consideration. Draw the diagram and analyse it carefully before marking the correct answer.
Recently Updated Pages
The hybridization and shape of NH2 ion are a sp2 and class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Total number of orbitals associated with the 3rd shell class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following has the lowest boiling point class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Which of the following compounds has zero dipole moment class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Number of g of oxygen in 322 g Na2SO410H2O is Molwt class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
In the neutralization process of H3PO4 and NaOH the class 11 chemistry JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Physics Average Value and RMS Value JEE Main 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)