Calculate angular momentum of an electron in the third Bohr orbit of hydrogen atom.
Answer
Verified
471.3k+ views
Hint: According to Bohr postulates, the motion of an electron in a circular orbit around the nucleus is restricted in such a way that its angular momentum is an integral multiple of $h/2\pi $.
Then, $mvr = nh/2\pi $, where $m$ is mass of an electron, $v$ is velocity of the electron, $r$ is radius of orbit and $h$ is Planck's constant.
Complete step by step answer:
According to Bohr postulates, the motion of an electron in a circular orbit around the nucleus is restricted in such a way that its angular momentum is an integral multiple of $h/2\pi $.
Then, angular momentum of an electron is $mvr = nh/2\pi $, where $m$ is mass of an electron, $v$ is velocity of the electron, $r$ is radius of orbit and $h$ is Planck's constant.
In the above equation $n$ is the orbit number in which electrons are present.
As given electron is in third Bohr orbit, then $n = 3.$
Hence the angular momentum of an electron in the third Bohr orbit of a hydrogen atom is given by $mvr = \dfrac{{3h}}{{2\pi }}$.
Note: Bohr’s postulates are only applicable on Hydrogen like atoms means atoms with only one electron in their valence shell. Bohr’s gives the postulates about hydrogen atoms but these are also applicable hydrogen like atoms. According to Bohr an atom has a number of stable orbits in which an electron can reside without the emission of radiant energy and each orbit corresponds to a particular energy level.
Then, $mvr = nh/2\pi $, where $m$ is mass of an electron, $v$ is velocity of the electron, $r$ is radius of orbit and $h$ is Planck's constant.
Complete step by step answer:
According to Bohr postulates, the motion of an electron in a circular orbit around the nucleus is restricted in such a way that its angular momentum is an integral multiple of $h/2\pi $.
Then, angular momentum of an electron is $mvr = nh/2\pi $, where $m$ is mass of an electron, $v$ is velocity of the electron, $r$ is radius of orbit and $h$ is Planck's constant.
In the above equation $n$ is the orbit number in which electrons are present.
As given electron is in third Bohr orbit, then $n = 3.$
Hence the angular momentum of an electron in the third Bohr orbit of a hydrogen atom is given by $mvr = \dfrac{{3h}}{{2\pi }}$.
Note: Bohr’s postulates are only applicable on Hydrogen like atoms means atoms with only one electron in their valence shell. Bohr’s gives the postulates about hydrogen atoms but these are also applicable hydrogen like atoms. According to Bohr an atom has a number of stable orbits in which an electron can reside without the emission of radiant energy and each orbit corresponds to a particular energy level.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE