Answer
Verified
443.7k+ views
Hint:
We all know the clock has 3 hands. The hour hand, the minute hand and the second hand. The minute hand is the 2nd hand which takes 1 hour to complete its one circle of rotation. Similarly the hour hand and second hand take 12 hours and 1 minute to complete one rotation.
Complete step by step answer:
We know that in circular motion, angular speed or velocity is a completely different physical quantity than angular speed.
Let’s look at the following diagram.
A particle in motion P, has an angular displacement of $\theta $ for a time period of complete rotation $t$ .
Angular velocity is defined as rate of change of angular positions $\theta $ , that is $\omega = \dfrac{{d\theta }}{{dt}}$
Where $d\theta $ and $dt$ are the changes in angular displacement and time respectively.
The unit of angular velocity is $rad{s^{ - 1}}$
The linear velocity of the particle P is displacement per unit time or $v = \dfrac{{ds}}{{dt}}$
Where $ds$ is the change in position/displacement of the particle.
Linear velocity is related to angular velocity by the following equation,
$v = r\omega $ , where $r$ is the radius of the circular trajectory the particle exhibits.
As the second hand of the clock, that is, the minute hand takes 1 hour to complete a full rotation ( a full rotation means angular displacement of $2\pi rad$ .
Thus the angular velocity will be, $\omega = \dfrac{{2\pi }}{{3600}}$
Because 1 hour converted to seconds is $3600s$
$ \Rightarrow \omega = 5.48 \times {10^{ - 3}}rad.{s^{ - 1}}$
Now, the linear velocity of the 2nd hand of the clock will be,
$v = r\omega $
Given that the length of the 2nd hand is $7cm$ or $0.07m$. Substituting the values of $\omega $ and $r$ we get,
$v = 0.07 \times 5.48 \times {10^{ - 3}}$
$ \Rightarrow v = 3.8 \times {10^{ - 4}}m{s^{ - 1}}$
This is the value of linear velocity of the tip of the 2nd hand of the clock.
Note: Make sure you are doing calculations in the same system of units. While converting use power of 10 values for easier calculations. We can similarly calculate the angular and linear velocities of 1st and 3rd hands of a clock such that their time period for a complete rotation around the clock is 12 hours and 1 minute respectively.
We all know the clock has 3 hands. The hour hand, the minute hand and the second hand. The minute hand is the 2nd hand which takes 1 hour to complete its one circle of rotation. Similarly the hour hand and second hand take 12 hours and 1 minute to complete one rotation.
Complete step by step answer:
We know that in circular motion, angular speed or velocity is a completely different physical quantity than angular speed.
Let’s look at the following diagram.
A particle in motion P, has an angular displacement of $\theta $ for a time period of complete rotation $t$ .
Angular velocity is defined as rate of change of angular positions $\theta $ , that is $\omega = \dfrac{{d\theta }}{{dt}}$
Where $d\theta $ and $dt$ are the changes in angular displacement and time respectively.
The unit of angular velocity is $rad{s^{ - 1}}$
The linear velocity of the particle P is displacement per unit time or $v = \dfrac{{ds}}{{dt}}$
Where $ds$ is the change in position/displacement of the particle.
Linear velocity is related to angular velocity by the following equation,
$v = r\omega $ , where $r$ is the radius of the circular trajectory the particle exhibits.
As the second hand of the clock, that is, the minute hand takes 1 hour to complete a full rotation ( a full rotation means angular displacement of $2\pi rad$ .
Thus the angular velocity will be, $\omega = \dfrac{{2\pi }}{{3600}}$
Because 1 hour converted to seconds is $3600s$
$ \Rightarrow \omega = 5.48 \times {10^{ - 3}}rad.{s^{ - 1}}$
Now, the linear velocity of the 2nd hand of the clock will be,
$v = r\omega $
Given that the length of the 2nd hand is $7cm$ or $0.07m$. Substituting the values of $\omega $ and $r$ we get,
$v = 0.07 \times 5.48 \times {10^{ - 3}}$
$ \Rightarrow v = 3.8 \times {10^{ - 4}}m{s^{ - 1}}$
This is the value of linear velocity of the tip of the 2nd hand of the clock.
Note: Make sure you are doing calculations in the same system of units. While converting use power of 10 values for easier calculations. We can similarly calculate the angular and linear velocities of 1st and 3rd hands of a clock such that their time period for a complete rotation around the clock is 12 hours and 1 minute respectively.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE