Answer
Verified
497.7k+ views
Hint: Perform the given binary operation on the elements to check the condition of associativity and commutativity. Commutative property holds when for any two elements a and b, we have \[a*b=b*a\]. Associative property holds when for any three elements a, b and c, we have \[a*\left( b*c \right)=\left( a*b \right)*c\].
Complete step-by-step answer:
We have a binary operation \['*'\] defined on set of integers such that \[a*b=a+b+ab\] holds for all \[a,b\in \mathbb{Z}\]. We have to check the associativity and commutativity on this operation.
Commutative property holds when for any two elements a and b, we have \[a*b=b*a\].
We know that \[a*b=a+b+ab\].
We will evaluate the value of \[b*a\]. We have \[b*a=b+a+ba\].
We know that for any two integers a and b, commutativity holds for the operations addition and multiplication. Thus, we have \[a+b=b+a\] and \[ab=ba\].
So, we have \[b*a=b+a+ba=a+b+ab=a*b\].
Thus, commutative property holds for the binary relation \['*'\].
We will now check the associative property.
We will evaluate the value of \[a*\left( b*c \right)\] and \[\left( a*b \right)*c\].
We have \[\left( a*b \right)*c=(a+b+ab)*c=\left( a+b+ab \right)+c+\left( a+b+ab \right)c\].
Further simplifying the above equation, we have \[\left( a*b \right)*c=a+b+ab+c+ac+bc+abc\].
Thus, we have \[\left( a*b \right)*c=a+b+c+ac+bc+ab+abc\].
We now have \[a*\left( b*c \right)=a*\left( b+c+bc \right)=a+\left( b+c+bc \right)+a\left( b+c+bc \right)\].
Further simplifying the equation, we have \[a*\left( b*c \right)=a+b+c+bc+ab+ac+abc\].
Thus, we have \[a*\left( b*c \right)=a+b+c+ab+ac+bc+abc\].
We observe that \[a*\left( b*c \right)=\left( a*b \right)*c\].
Thus, the associative property holds as well.
Hence, commutativity and associativity both hold for the binary operation \['*'\].
Note: One must clearly know the definition of associativity and commutativity. Also, it’s necessary to know that addition and multiplication are associative and commutative on the set of integers. We need to use this property of addition and multiplication to check the associativity and commutativity of the given binary operation.
Complete step-by-step answer:
We have a binary operation \['*'\] defined on set of integers such that \[a*b=a+b+ab\] holds for all \[a,b\in \mathbb{Z}\]. We have to check the associativity and commutativity on this operation.
Commutative property holds when for any two elements a and b, we have \[a*b=b*a\].
We know that \[a*b=a+b+ab\].
We will evaluate the value of \[b*a\]. We have \[b*a=b+a+ba\].
We know that for any two integers a and b, commutativity holds for the operations addition and multiplication. Thus, we have \[a+b=b+a\] and \[ab=ba\].
So, we have \[b*a=b+a+ba=a+b+ab=a*b\].
Thus, commutative property holds for the binary relation \['*'\].
We will now check the associative property.
We will evaluate the value of \[a*\left( b*c \right)\] and \[\left( a*b \right)*c\].
We have \[\left( a*b \right)*c=(a+b+ab)*c=\left( a+b+ab \right)+c+\left( a+b+ab \right)c\].
Further simplifying the above equation, we have \[\left( a*b \right)*c=a+b+ab+c+ac+bc+abc\].
Thus, we have \[\left( a*b \right)*c=a+b+c+ac+bc+ab+abc\].
We now have \[a*\left( b*c \right)=a*\left( b+c+bc \right)=a+\left( b+c+bc \right)+a\left( b+c+bc \right)\].
Further simplifying the equation, we have \[a*\left( b*c \right)=a+b+c+bc+ab+ac+abc\].
Thus, we have \[a*\left( b*c \right)=a+b+c+ab+ac+bc+abc\].
We observe that \[a*\left( b*c \right)=\left( a*b \right)*c\].
Thus, the associative property holds as well.
Hence, commutativity and associativity both hold for the binary operation \['*'\].
Note: One must clearly know the definition of associativity and commutativity. Also, it’s necessary to know that addition and multiplication are associative and commutative on the set of integers. We need to use this property of addition and multiplication to check the associativity and commutativity of the given binary operation.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE