Answer
Verified
487.2k+ views
Hint: Simplify the numbers and check if they can be represented in \[\dfrac{p}{q}\] form, where p and q are integers and \[q \ne 0\] . If they can be represented, then they belong to rational numbers, if not, then they are irrational numbers.
Complete step-by-step answer:
A number that is in the form \[\dfrac{p}{q}\] or can be simplified to the form \[\dfrac{p}{q}\] where p and q are integers and \[q \ne 0\] is called a rational number. They can also be represented in the decimal form as terminating decimals or non-terminating recurring decimals. Examples include \[22,\dfrac{5}{7},\dfrac{1}{2}\] .
A real number that can’t be represented in the form \[\dfrac{p}{q}\] where both p and q are integers and \[q \ne 0\] is called an irrational number. These numbers are non-terminating and non-recurring decimals.
Examples include \[\pi ,\sqrt 5 ,\sqrt[3]{2}\] .
Now, having the knowledge of rational and irrational numbers, we can classify the numbers into these categories.
(i). The number \[2 - \sqrt 5 \] , is the difference between 2 and \[\sqrt 5 \] .
2 is a rational number because it can be represented as \[\dfrac{2}{1}\] where 2 and 1 are integers.
\[\sqrt 5 \] is an irrational number because it can’t be represented in the form of rational numbers.
We know that the sum or difference of a rational and an irrational number is an irrational number.
Hence, \[2 - \sqrt 5 \] is irrational.
(ii). The number \[(3 + \sqrt {23} ) - \sqrt {23} \] can be simplified as follows:
\[(3 + \sqrt {23} ) - \sqrt {23} = 3 + \sqrt {23} - \sqrt {23} \]
Cancelling \[\sqrt {23} \] , we have:
\[(3 + \sqrt {23} ) - \sqrt {23} = 3\]
We know that 3 is a rational number since it can be represented as \[\dfrac{3}{1}\] where 3 and 1 are integers.
Hence, \[(3 + \sqrt {23} ) - \sqrt {23} \] is rational.
(iii). The number \[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }}\] can be simplified by cancelling \[\sqrt 7 \] as follows:
\[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }} = \dfrac{2}{7}\]
We can see that \[\dfrac{2}{7}\] is in the rational form since 2 and 7 are integers.
Hence, \[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }}\] is rational.
(iv). We can simplify the number \[\dfrac{1}{{\sqrt 2 }}\] by multiplying numerator and denominator by \[\sqrt 2 \] .
\[\dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
\[\dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\]
We know that \[\sqrt 2 \] is irrational and 2 is rational.
Division of an irrational number by a rational number, results in an irrational number.
Hence, \[\dfrac{1}{{\sqrt 2 }}\] is irrational.
(v). In the number \[2\pi \] , 2 is rational and \[\pi \] is irrational.
Multiplication of a rational and an irrational number is an irrational number.
Hence, \[2\pi \] is irrational.
Note: You might conclude that options (ii) and (iii) are irrational numbers because they contain the square root terms \[\sqrt {23} \] and \[\sqrt 7 \] respectively, but it is wrong. Simplify the number completely and then check for the \[\dfrac{p}{q}\] form.
Complete step-by-step answer:
A number that is in the form \[\dfrac{p}{q}\] or can be simplified to the form \[\dfrac{p}{q}\] where p and q are integers and \[q \ne 0\] is called a rational number. They can also be represented in the decimal form as terminating decimals or non-terminating recurring decimals. Examples include \[22,\dfrac{5}{7},\dfrac{1}{2}\] .
A real number that can’t be represented in the form \[\dfrac{p}{q}\] where both p and q are integers and \[q \ne 0\] is called an irrational number. These numbers are non-terminating and non-recurring decimals.
Examples include \[\pi ,\sqrt 5 ,\sqrt[3]{2}\] .
Now, having the knowledge of rational and irrational numbers, we can classify the numbers into these categories.
(i). The number \[2 - \sqrt 5 \] , is the difference between 2 and \[\sqrt 5 \] .
2 is a rational number because it can be represented as \[\dfrac{2}{1}\] where 2 and 1 are integers.
\[\sqrt 5 \] is an irrational number because it can’t be represented in the form of rational numbers.
We know that the sum or difference of a rational and an irrational number is an irrational number.
Hence, \[2 - \sqrt 5 \] is irrational.
(ii). The number \[(3 + \sqrt {23} ) - \sqrt {23} \] can be simplified as follows:
\[(3 + \sqrt {23} ) - \sqrt {23} = 3 + \sqrt {23} - \sqrt {23} \]
Cancelling \[\sqrt {23} \] , we have:
\[(3 + \sqrt {23} ) - \sqrt {23} = 3\]
We know that 3 is a rational number since it can be represented as \[\dfrac{3}{1}\] where 3 and 1 are integers.
Hence, \[(3 + \sqrt {23} ) - \sqrt {23} \] is rational.
(iii). The number \[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }}\] can be simplified by cancelling \[\sqrt 7 \] as follows:
\[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }} = \dfrac{2}{7}\]
We can see that \[\dfrac{2}{7}\] is in the rational form since 2 and 7 are integers.
Hence, \[\dfrac{{2\sqrt 7 }}{{7\sqrt 7 }}\] is rational.
(iv). We can simplify the number \[\dfrac{1}{{\sqrt 2 }}\] by multiplying numerator and denominator by \[\sqrt 2 \] .
\[\dfrac{1}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }}\]
\[\dfrac{1}{{\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\]
We know that \[\sqrt 2 \] is irrational and 2 is rational.
Division of an irrational number by a rational number, results in an irrational number.
Hence, \[\dfrac{1}{{\sqrt 2 }}\] is irrational.
(v). In the number \[2\pi \] , 2 is rational and \[\pi \] is irrational.
Multiplication of a rational and an irrational number is an irrational number.
Hence, \[2\pi \] is irrational.
Note: You might conclude that options (ii) and (iii) are irrational numbers because they contain the square root terms \[\sqrt {23} \] and \[\sqrt 7 \] respectively, but it is wrong. Simplify the number completely and then check for the \[\dfrac{p}{q}\] form.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE