Coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$.
Answer
Verified
442.8k+ views
Hint: In the above question you have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term for expansion which you can use is ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$, where p, q and r are natural numbers. So let us see how we can solve this problem.
Step by step solution:
Given that we have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term in expansion of ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$ , where p + q + r = n and p, q, r $\in$ {1, 2, 3…, n}
We have to expand ${(a + b + c)^{18}}$
$= \dfrac{{18!}}{{p!q!r!}}{a^p}{b^q}{c^r}$
The term contains ${a^8}{b^6}{c^4}$ according to the question
$= \dfrac{{18!}}{{8!6!4!}}{a^8}{b^6}{c^4}$
Therefore, the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$ is $\dfrac{{18!}}{{8!6!4!}}$.
Note:
There is an alternative method of solving the above question, let us see that also.
Given the term for expansion is ${(a + (b + c))^{18}}$
$= {}^{18}{C_r}{a^{18 - r}}{(b + c)^r}$
$= {}^{18}{C_r}{}^r{C_k}{a^{18 - r}}{b^{r - k}}{c^k}$
From ${a^8}{b^6}{c^4}$ , we know that the exponent of a, b and c are 8, 6 and 4 respectively. So
$\Rightarrow 18{\text{ }} - {\text{ }}r = {\text{ }}8$
Subtracting both sides with 18, we get
$\Rightarrow {\text{ }} - {\text{ }}r = {\text{ }} - 10$
$\Rightarrow r = 10$
Also, r – k = 6 since the coefficient of b is 6 and k = 10 – 6 = 4
Therefore, the coefficient becomes,
$^{18}{C_{10}}^{10}{C_4}$
${ = ^{18}}{C_{10}}^{10}{C_6}$
Therefore, we get $= \dfrac{{18!}}{{8!6!4!}}$ as the coefficient of ${a^8}{b^6}{c^4}$.
Step by step solution:
Given that we have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term in expansion of ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$ , where p + q + r = n and p, q, r $\in$ {1, 2, 3…, n}
We have to expand ${(a + b + c)^{18}}$
$= \dfrac{{18!}}{{p!q!r!}}{a^p}{b^q}{c^r}$
The term contains ${a^8}{b^6}{c^4}$ according to the question
$= \dfrac{{18!}}{{8!6!4!}}{a^8}{b^6}{c^4}$
Therefore, the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$ is $\dfrac{{18!}}{{8!6!4!}}$.
Note:
There is an alternative method of solving the above question, let us see that also.
Given the term for expansion is ${(a + (b + c))^{18}}$
$= {}^{18}{C_r}{a^{18 - r}}{(b + c)^r}$
$= {}^{18}{C_r}{}^r{C_k}{a^{18 - r}}{b^{r - k}}{c^k}$
From ${a^8}{b^6}{c^4}$ , we know that the exponent of a, b and c are 8, 6 and 4 respectively. So
$\Rightarrow 18{\text{ }} - {\text{ }}r = {\text{ }}8$
Subtracting both sides with 18, we get
$\Rightarrow {\text{ }} - {\text{ }}r = {\text{ }} - 10$
$\Rightarrow r = 10$
Also, r – k = 6 since the coefficient of b is 6 and k = 10 – 6 = 4
Therefore, the coefficient becomes,
$^{18}{C_{10}}^{10}{C_4}$
${ = ^{18}}{C_{10}}^{10}{C_6}$
Therefore, we get $= \dfrac{{18!}}{{8!6!4!}}$ as the coefficient of ${a^8}{b^6}{c^4}$.
Recently Updated Pages
You are awaiting your class 10th results Meanwhile class 7 english CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Collective noun a of sailors class 7 english CBSE
Convert 200 Million dollars in rupees class 7 maths CBSE
Fill in the blanks with appropriate modals a Drivers class 7 english CBSE
What are the controls affecting the climate of Ind class 7 social science CBSE
The southernmost point of the Indian mainland is known class 7 social studies CBSE