Answer
Verified
430.8k+ views
Hint: In the above question you have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term for expansion which you can use is ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$, where p, q and r are natural numbers. So let us see how we can solve this problem.
Step by step solution:
Given that we have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term in expansion of ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$ , where p + q + r = n and p, q, r $\in$ {1, 2, 3…, n}
We have to expand ${(a + b + c)^{18}}$
$= \dfrac{{18!}}{{p!q!r!}}{a^p}{b^q}{c^r}$
The term contains ${a^8}{b^6}{c^4}$ according to the question
$= \dfrac{{18!}}{{8!6!4!}}{a^8}{b^6}{c^4}$
Therefore, the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$ is $\dfrac{{18!}}{{8!6!4!}}$.
Note:
There is an alternative method of solving the above question, let us see that also.
Given the term for expansion is ${(a + (b + c))^{18}}$
$= {}^{18}{C_r}{a^{18 - r}}{(b + c)^r}$
$= {}^{18}{C_r}{}^r{C_k}{a^{18 - r}}{b^{r - k}}{c^k}$
From ${a^8}{b^6}{c^4}$ , we know that the exponent of a, b and c are 8, 6 and 4 respectively. So
$\Rightarrow 18{\text{ }} - {\text{ }}r = {\text{ }}8$
Subtracting both sides with 18, we get
$\Rightarrow {\text{ }} - {\text{ }}r = {\text{ }} - 10$
$\Rightarrow r = 10$
Also, r – k = 6 since the coefficient of b is 6 and k = 10 – 6 = 4
Therefore, the coefficient becomes,
$^{18}{C_{10}}^{10}{C_4}$
${ = ^{18}}{C_{10}}^{10}{C_6}$
Therefore, we get $= \dfrac{{18!}}{{8!6!4!}}$ as the coefficient of ${a^8}{b^6}{c^4}$.
Step by step solution:
Given that we have to find the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$. The general term in expansion of ${(x + y + z)^z} = \dfrac{{n!}}{{p!q!r!}}{x^p}{y^q}{z^r}$ , where p + q + r = n and p, q, r $\in$ {1, 2, 3…, n}
We have to expand ${(a + b + c)^{18}}$
$= \dfrac{{18!}}{{p!q!r!}}{a^p}{b^q}{c^r}$
The term contains ${a^8}{b^6}{c^4}$ according to the question
$= \dfrac{{18!}}{{8!6!4!}}{a^8}{b^6}{c^4}$
Therefore, the coefficient of ${a^8}{b^6}{c^4}$ in the expansion of ${(a + b + c)^{18}}$ is $\dfrac{{18!}}{{8!6!4!}}$.
Note:
There is an alternative method of solving the above question, let us see that also.
Given the term for expansion is ${(a + (b + c))^{18}}$
$= {}^{18}{C_r}{a^{18 - r}}{(b + c)^r}$
$= {}^{18}{C_r}{}^r{C_k}{a^{18 - r}}{b^{r - k}}{c^k}$
From ${a^8}{b^6}{c^4}$ , we know that the exponent of a, b and c are 8, 6 and 4 respectively. So
$\Rightarrow 18{\text{ }} - {\text{ }}r = {\text{ }}8$
Subtracting both sides with 18, we get
$\Rightarrow {\text{ }} - {\text{ }}r = {\text{ }} - 10$
$\Rightarrow r = 10$
Also, r – k = 6 since the coefficient of b is 6 and k = 10 – 6 = 4
Therefore, the coefficient becomes,
$^{18}{C_{10}}^{10}{C_4}$
${ = ^{18}}{C_{10}}^{10}{C_6}$
Therefore, we get $= \dfrac{{18!}}{{8!6!4!}}$ as the coefficient of ${a^8}{b^6}{c^4}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE