Answer
Verified
441.9k+ views
Hint: In this question, we are given a right angled triangle along with measurements of base and hypotenuse of the triangle. We need to find the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $. For this, we will first find the value of the perpendicular of the right angled triangle, using Pythagoras theorem. Pythagora's theorem states that, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. After that, we will find the value of $\cos \theta \text{ and }\sin \theta $ and use them to find the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
We will use $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$ and
$\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Complete step-by-step answer:
Here we are given $\Delta ABC$ with AB = 29 and BC = 21. Since, $\Delta ABC=\theta $ so according to the diagram, base = 21 and hypotenuse = 29.
Now, let us first find the value of AC using Pythagoras theorem.
According to the Pythagoras theorem, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. Hence,
\[{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}\]
According to the diagram,
\[\begin{align}
& {{\left( \text{AB} \right)}^{2}}={{\left( \text{AC} \right)}^{2}}+{{\left( \text{BC} \right)}^{2}} \\
& \Rightarrow A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
\end{align}\]
Putting values of AB and BC we get:
\[\Rightarrow A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}\]
Let us find values of ${{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$ using the property that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Hence, we get:
\[\begin{align}
& \Rightarrow A{{C}^{2}}=\left( 29+21 \right)\left( 29-21 \right) \\
& \Rightarrow A{{C}^{2}}=\left( 50 \right)\left( 8 \right) \\
& \Rightarrow A{{C}^{2}}=400 \\
\end{align}\]
Taking square root both sides, we get:
\[\Rightarrow AC=\sqrt{400}\]
Now, we know that, $20\times 20=400$ we get:
\[\Rightarrow AC=\sqrt{20\times 20}=20\]
So we get perpendicular = 20.
Now, let us find the value of $\cos \theta \text{ and }\sin \theta $.
As we know, $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$.
Hence, $\cos \theta =\dfrac{21}{\text{29}}$.
As we know, $\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Hence, $\sin \theta =\dfrac{20}{\text{29}}$.
Now we need to find out the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
So putting values of $\cos \theta \text{ and }\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{21}{29} \right)}^{2}}+{{\left( \dfrac{20}{29} \right)}^{2}} \\
& \Rightarrow \dfrac{{{\left( 21 \right)}^{2}}+{{\left( 20 \right)}^{2}}}{{{\left( 29 \right)}^{2}}} \\
& \Rightarrow \dfrac{441+400}{841} \\
& \Rightarrow \dfrac{841}{841} \\
& \Rightarrow 1 \\
\end{align}\]
Hence the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is 1.
Note: Students should take care while finding the value of perpendicular. Students can get confused between base and perpendicular while applying to the formula of $\cos \theta \text{ and }\sin \theta $. They can check their answer knowing that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is always 1 because $\cos \theta =\dfrac{B}{H}\text{ and }\sin \theta =\dfrac{P}{H}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta ={{\left( \dfrac{B}{H} \right)}^{2}}+{{\left( \dfrac{P}{H} \right)}^{2}}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{B}^{2}}+{{P}^{2}}}{{{H}^{2}}}$. By Pythagoras theorem, ${{B}^{2}}+{{P}^{2}}={{H}^{2}}$ so ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{H}^{2}}}{{{H}^{2}}}=1$. Here, B is base, P is perpendicular and H is hypotenuse.
We will use $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$ and
$\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Complete step-by-step answer:
Here we are given $\Delta ABC$ with AB = 29 and BC = 21. Since, $\Delta ABC=\theta $ so according to the diagram, base = 21 and hypotenuse = 29.
Now, let us first find the value of AC using Pythagoras theorem.
According to the Pythagoras theorem, the sum of the squares of the perpendicular and the base of the triangle is equal to the square of the hypotenuse. Hence,
\[{{\left( \text{Hypotenuse} \right)}^{2}}={{\left( \text{Perpendicular} \right)}^{2}}+{{\left( \text{Base} \right)}^{2}}\]
According to the diagram,
\[\begin{align}
& {{\left( \text{AB} \right)}^{2}}={{\left( \text{AC} \right)}^{2}}+{{\left( \text{BC} \right)}^{2}} \\
& \Rightarrow A{{C}^{2}}=A{{B}^{2}}-B{{C}^{2}} \\
\end{align}\]
Putting values of AB and BC we get:
\[\Rightarrow A{{C}^{2}}={{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}\]
Let us find values of ${{\left( 29 \right)}^{2}}-{{\left( 21 \right)}^{2}}$ using the property that ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$. Hence, we get:
\[\begin{align}
& \Rightarrow A{{C}^{2}}=\left( 29+21 \right)\left( 29-21 \right) \\
& \Rightarrow A{{C}^{2}}=\left( 50 \right)\left( 8 \right) \\
& \Rightarrow A{{C}^{2}}=400 \\
\end{align}\]
Taking square root both sides, we get:
\[\Rightarrow AC=\sqrt{400}\]
Now, we know that, $20\times 20=400$ we get:
\[\Rightarrow AC=\sqrt{20\times 20}=20\]
So we get perpendicular = 20.
Now, let us find the value of $\cos \theta \text{ and }\sin \theta $.
As we know, $\cos \theta =\dfrac{\text{Side adjacent to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Base}}{\text{Hypotenuse}}$.
Hence, $\cos \theta =\dfrac{21}{\text{29}}$.
As we know, $\sin \theta =\dfrac{\text{Side opposite to angle }\theta }{\text{Hypotenuse}}=\dfrac{\text{Perpendicular}}{\text{Hypotenuse}}$.
Hence, $\sin \theta =\dfrac{20}{\text{29}}$.
Now we need to find out the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $.
So putting values of $\cos \theta \text{ and }\sin \theta $ in ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ we get:
\[\begin{align}
& \Rightarrow {{\left( \dfrac{21}{29} \right)}^{2}}+{{\left( \dfrac{20}{29} \right)}^{2}} \\
& \Rightarrow \dfrac{{{\left( 21 \right)}^{2}}+{{\left( 20 \right)}^{2}}}{{{\left( 29 \right)}^{2}}} \\
& \Rightarrow \dfrac{441+400}{841} \\
& \Rightarrow \dfrac{841}{841} \\
& \Rightarrow 1 \\
\end{align}\]
Hence the value of ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is 1.
Note: Students should take care while finding the value of perpendicular. Students can get confused between base and perpendicular while applying to the formula of $\cos \theta \text{ and }\sin \theta $. They can check their answer knowing that ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta $ is always 1 because $\cos \theta =\dfrac{B}{H}\text{ and }\sin \theta =\dfrac{P}{H}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta ={{\left( \dfrac{B}{H} \right)}^{2}}+{{\left( \dfrac{P}{H} \right)}^{2}}\Rightarrow {{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{B}^{2}}+{{P}^{2}}}{{{H}^{2}}}$. By Pythagoras theorem, ${{B}^{2}}+{{P}^{2}}={{H}^{2}}$ so ${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =\dfrac{{{H}^{2}}}{{{H}^{2}}}=1$. Here, B is base, P is perpendicular and H is hypotenuse.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE