Answer
Verified
483.9k+ views
Hint: In logic and mathematics, the contrapositive of a conditional statement of the form “If \[p\] then \[q\]” is “If \[ \sim q\] then \[ \sim p\]”. Symbolically, the contrapositive of \[p \to q\] is \[ \sim q \to \sim p\]. So, take the first statement as \[p\] and the second statement as \[q\] and find the contrapositive as stated above. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Statement: “If two numbers are not equal, then their squares are not equal”.
Let the first statement i.e., If two numbers are not equal is \[p\]
And the second statement i.e., their squares are not equal is \[q\]
Now the total statement is given by \[p \to q\]
We know that the contrapositive statement of \[p \to q\] is \[ \sim q \to \sim p\].
So, consider
The negative statement of \[q\] i.e., \[ \sim q\] is If the squares of two numbers are equal
The negative statement of \[p\] i.e., \[ \sim p\] is the two numbers are equal
Hence the contrapositive statement \[ \sim q \to \sim p\] is given by “If the squares of the two numbers are equal, then the numbers are equal”.
Thus, the correct option is A. If the squares of the two numbers are equal, then the numbers are equal.
Note: Contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Complete step-by-step answer:
Statement: “If two numbers are not equal, then their squares are not equal”.
Let the first statement i.e., If two numbers are not equal is \[p\]
And the second statement i.e., their squares are not equal is \[q\]
Now the total statement is given by \[p \to q\]
We know that the contrapositive statement of \[p \to q\] is \[ \sim q \to \sim p\].
So, consider
The negative statement of \[q\] i.e., \[ \sim q\] is If the squares of two numbers are equal
The negative statement of \[p\] i.e., \[ \sim p\] is the two numbers are equal
Hence the contrapositive statement \[ \sim q \to \sim p\] is given by “If the squares of the two numbers are equal, then the numbers are equal”.
Thus, the correct option is A. If the squares of the two numbers are equal, then the numbers are equal.
Note: Contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE