
Contrapositive of the statement “If two numbers are not equal, then their squares are not equal”, is:
A. If the squares of the two numbers are equal, then the numbers are equal.
B. If the squares of two numbers are equal, then the numbers are not equal.
C. If the squares of two numbers are not equal, then the numbers are not equal.
D. None of these
Answer
616.5k+ views
Hint: In logic and mathematics, the contrapositive of a conditional statement of the form “If \[p\] then \[q\]” is “If \[ \sim q\] then \[ \sim p\]”. Symbolically, the contrapositive of \[p \to q\] is \[ \sim q \to \sim p\]. So, take the first statement as \[p\] and the second statement as \[q\] and find the contrapositive as stated above. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Statement: “If two numbers are not equal, then their squares are not equal”.
Let the first statement i.e., If two numbers are not equal is \[p\]
And the second statement i.e., their squares are not equal is \[q\]
Now the total statement is given by \[p \to q\]
We know that the contrapositive statement of \[p \to q\] is \[ \sim q \to \sim p\].
So, consider
The negative statement of \[q\] i.e., \[ \sim q\] is If the squares of two numbers are equal
The negative statement of \[p\] i.e., \[ \sim p\] is the two numbers are equal
Hence the contrapositive statement \[ \sim q \to \sim p\] is given by “If the squares of the two numbers are equal, then the numbers are equal”.
Thus, the correct option is A. If the squares of the two numbers are equal, then the numbers are equal.
Note: Contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Complete step-by-step answer:
Statement: “If two numbers are not equal, then their squares are not equal”.
Let the first statement i.e., If two numbers are not equal is \[p\]
And the second statement i.e., their squares are not equal is \[q\]
Now the total statement is given by \[p \to q\]
We know that the contrapositive statement of \[p \to q\] is \[ \sim q \to \sim p\].
So, consider
The negative statement of \[q\] i.e., \[ \sim q\] is If the squares of two numbers are equal
The negative statement of \[p\] i.e., \[ \sim p\] is the two numbers are equal
Hence the contrapositive statement \[ \sim q \to \sim p\] is given by “If the squares of the two numbers are equal, then the numbers are equal”.
Thus, the correct option is A. If the squares of the two numbers are equal, then the numbers are equal.
Note: Contraposition refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as proof by contraposition. The contrapositive of a statement has its antecedent and consequent inverted and flipped.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

