Answer
Verified
429k+ views
Hint: Here, we will use the rectangular coordinates and simplify it to find the value of \[{r^2}\]. Then we will rewrite the given equation and substitute the obtained value and rectangular coordinate to simplify it further. Then by using the trigonometric identity and exponent rules we will convert the equation into the rectangular form.
Formula Used:
We will use the following formula:
1. The square of the sum of the numbers is given by \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
2. Product rule of exponents:\[{a^m} \times {a^n} = {a^{m + n}}\]
3. Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Complete Step by Step Solution:
We are given the equation in a Polar form \[{r^2} = \sin \theta \].
Now, multiplying both the sides of the equation with \[r\], we get
\[ \Rightarrow {r^2} \cdot r = r \cdot \sin \theta \] ……………………………………………….\[\left( 1 \right)\]
We know that in Rectangular form \[x = r\cos \theta \] and \[y = r\sin \theta \].
Now squaring and adding the coordinates of the Rectangular form, we get
\[{x^2} + {y^2} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \]
By taking out the common factor, we get
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)\]
Now, by using the Trigonometric Identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( 1 \right)\]
\[ \Rightarrow {x^2} + {y^2} = {r^2}\] ……………………………………………\[\left( 2 \right)\]
By substituting above equation in equation \[\left( 1 \right)\], we get
\[\left( {{x^2} + {y^2}} \right) \cdot r = y\]
Dividing both sides by \[r\], we get
\[ \Rightarrow \left( {{x^2} + {y^2}} \right) = \dfrac{y}{r}\]…………………………………….\[\left( 3 \right)\]
Taking square root on both the sides of the equation \[\left( 2 \right)\], we get
\[r = \pm \sqrt {{x^2} + {y^2}} \]
Substituting the value of \[r\] in the equation \[\left( 3 \right)\], we get
\[\left( {{x^2} + {y^2}} \right) = \dfrac{y}{{ \pm \sqrt {{x^2} + {y^2}} }}\]
Now, by squaring on both the sides, we get
\[ \Rightarrow {\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Now, by using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow {\left( {{x^2}} \right)^2} + {\left( {{y^2}} \right)^2} + 2\left( {{x^2}} \right)\left( {{y^2}} \right) = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Using the Power rule for exponents \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we get
\[ \Rightarrow \left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right) = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Multiplying \[{x^2} + {y^2}\] on both the sides, we get
\[ \Rightarrow \left[ {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right]\left( {{x^2} + {y^2}} \right) = {y^2}\]
Now, by using the FOIL method, we get
\[ \Rightarrow {x^2}\left( {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right) + {y^2}\left( {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right) = {y^2}\]
Simplifying the equation, we get
\[ \Rightarrow \left( {\left( {{x^2} \cdot {x^4}} \right) + \left( {{x^2} \cdot {y^4}} \right) + 2\left( {{x^2} \cdot {x^2}} \right)\left( {{y^2}} \right)} \right) + \left( {\left( {{y^2} \cdot {x^4}} \right) + \left( {{y^2} \cdot {y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2} \cdot {y^2}} \right)} \right) = {y^2}\]
Now, by using product rule of exponents \[{a^m} \times {a^n} = {a^{m + n}}\], we get
\[ \Rightarrow \left( {\left( {{x^6}} \right) + \left( {{x^2}{y^4}} \right) + 2\left( {{x^4}} \right)\left( {{y^2}} \right)} \right) + \left( {\left( {{y^2}{x^4}} \right) + \left( {{y^6}} \right) + 2\left( {{x^2}} \right)\left( {{y^4}} \right)} \right) = {y^2}\]
Rewriting the equation, we get
\[ \Rightarrow {y^2} = {x^6} + {x^2}{y^4} + 2{x^4}{y^2} + {y^2}{x^4} + {y^6} + 2{x^2}{y^4}\]
Adding the like terms, we get
\[ \Rightarrow {y^2} = {x^6} + 3{x^2}{y^4} + 3{x^4}{y^2} + {y^6}\]
Therefore, the rectangular form of \[{r^2} = \sin \theta \] is \[{y^2} = {x^6} + 3{x^2}{y^4} + 3{x^4}{y^2} + {y^6}\].
Note:
We know that Polar coordinates are used to specify only two dimensions whereas Rectangular Coordinates which is also called as Cartesian Coordinates is used to specify three dimensions in a plane. FOIL method is a method of multiplying the binomials by multiplying the first terms, then the outer terms, then the inner terms and at last the last terms. Using this we can easily combine like terms.
Formula Used:
We will use the following formula:
1. The square of the sum of the numbers is given by \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\].
2. Product rule of exponents:\[{a^m} \times {a^n} = {a^{m + n}}\]
3. Power rule for Exponents: \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
Complete Step by Step Solution:
We are given the equation in a Polar form \[{r^2} = \sin \theta \].
Now, multiplying both the sides of the equation with \[r\], we get
\[ \Rightarrow {r^2} \cdot r = r \cdot \sin \theta \] ……………………………………………….\[\left( 1 \right)\]
We know that in Rectangular form \[x = r\cos \theta \] and \[y = r\sin \theta \].
Now squaring and adding the coordinates of the Rectangular form, we get
\[{x^2} + {y^2} = {r^2}{\cos ^2}\theta + {r^2}{\sin ^2}\theta \]
By taking out the common factor, we get
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( {{{\cos }^2}\theta + {{\sin }^2}\theta } \right)\]
Now, by using the Trigonometric Identity \[{\cos ^2}\theta + {\sin ^2}\theta = 1\], we get
\[ \Rightarrow {x^2} + {y^2} = {r^2}\left( 1 \right)\]
\[ \Rightarrow {x^2} + {y^2} = {r^2}\] ……………………………………………\[\left( 2 \right)\]
By substituting above equation in equation \[\left( 1 \right)\], we get
\[\left( {{x^2} + {y^2}} \right) \cdot r = y\]
Dividing both sides by \[r\], we get
\[ \Rightarrow \left( {{x^2} + {y^2}} \right) = \dfrac{y}{r}\]…………………………………….\[\left( 3 \right)\]
Taking square root on both the sides of the equation \[\left( 2 \right)\], we get
\[r = \pm \sqrt {{x^2} + {y^2}} \]
Substituting the value of \[r\] in the equation \[\left( 3 \right)\], we get
\[\left( {{x^2} + {y^2}} \right) = \dfrac{y}{{ \pm \sqrt {{x^2} + {y^2}} }}\]
Now, by squaring on both the sides, we get
\[ \Rightarrow {\left( {{x^2} + {y^2}} \right)^2} = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Now, by using the algebraic identity \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\], we get
\[ \Rightarrow {\left( {{x^2}} \right)^2} + {\left( {{y^2}} \right)^2} + 2\left( {{x^2}} \right)\left( {{y^2}} \right) = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Using the Power rule for exponents \[{\left( {{a^m}} \right)^n} = {a^{mn}}\], we get
\[ \Rightarrow \left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right) = \dfrac{{{y^2}}}{{{x^2} + {y^2}}}\]
Multiplying \[{x^2} + {y^2}\] on both the sides, we get
\[ \Rightarrow \left[ {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right]\left( {{x^2} + {y^2}} \right) = {y^2}\]
Now, by using the FOIL method, we get
\[ \Rightarrow {x^2}\left( {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right) + {y^2}\left( {\left( {{x^4}} \right) + \left( {{y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2}} \right)} \right) = {y^2}\]
Simplifying the equation, we get
\[ \Rightarrow \left( {\left( {{x^2} \cdot {x^4}} \right) + \left( {{x^2} \cdot {y^4}} \right) + 2\left( {{x^2} \cdot {x^2}} \right)\left( {{y^2}} \right)} \right) + \left( {\left( {{y^2} \cdot {x^4}} \right) + \left( {{y^2} \cdot {y^4}} \right) + 2\left( {{x^2}} \right)\left( {{y^2} \cdot {y^2}} \right)} \right) = {y^2}\]
Now, by using product rule of exponents \[{a^m} \times {a^n} = {a^{m + n}}\], we get
\[ \Rightarrow \left( {\left( {{x^6}} \right) + \left( {{x^2}{y^4}} \right) + 2\left( {{x^4}} \right)\left( {{y^2}} \right)} \right) + \left( {\left( {{y^2}{x^4}} \right) + \left( {{y^6}} \right) + 2\left( {{x^2}} \right)\left( {{y^4}} \right)} \right) = {y^2}\]
Rewriting the equation, we get
\[ \Rightarrow {y^2} = {x^6} + {x^2}{y^4} + 2{x^4}{y^2} + {y^2}{x^4} + {y^6} + 2{x^2}{y^4}\]
Adding the like terms, we get
\[ \Rightarrow {y^2} = {x^6} + 3{x^2}{y^4} + 3{x^4}{y^2} + {y^6}\]
Therefore, the rectangular form of \[{r^2} = \sin \theta \] is \[{y^2} = {x^6} + 3{x^2}{y^4} + 3{x^4}{y^2} + {y^6}\].
Note:
We know that Polar coordinates are used to specify only two dimensions whereas Rectangular Coordinates which is also called as Cartesian Coordinates is used to specify three dimensions in a plane. FOIL method is a method of multiplying the binomials by multiplying the first terms, then the outer terms, then the inner terms and at last the last terms. Using this we can easily combine like terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers