Answer
Verified
422.1k+ views
Hint: In this question, we can solve the equation \[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]. After then we can assume that the amplitude is changed by the factor $n$. Now, we can solve the above equation for $n$.
Complete step by step solution: -
We know that the loudness of sound is given by equation
$dB = 10\log \left( {\dfrac{{{I_0}}}{{{I_1}}}} \right) $
$\Rightarrow dB = 10\log {I_0} - 10\log {I_1} $
We know that intensity is directly proportional to the square of the amplitude i.e.
$I \propto {a^2}$
So,
\[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]
According to the question, if amplitude of sound is multiplied by a factor of$\sqrt {10} $, the decibel level increases by \[10\] units. So,
$d{B^1} = 10\log {\left( {\sqrt {10} } \right)^2} - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10\log 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - dB $
Where \[dB = 10\log {a_1}^2$
Now, if \[70dB\] is being played at a function and if it is reduced to a level of\[30dB\] , then let the amplitude of the instrument playing music be reduced by a factor of $n$.
So,
$d{B^1} = 10\log \left( {\dfrac{{{a_1}^2}}{{{n^2}}}} \right) $
$\Rightarrow d{B^1} = 10\log {a_1}^2 - 10\log {n^2} $
$\Rightarrow d{B^1} = dB - 20\log n $
$\Rightarrow d{B^1} - dB = 20\log n$
$\Rightarrow 70 - 30 = 20\log n $
$\Rightarrow 40 = 20\log n $
$\Rightarrow 2 = \log n $
$\Rightarrow n = {10^2} $
$\Rightarrow n = 100 $
So, loud music of \[70dB\] is being played at a function. To reduce the loudness to a level of\[30dB\] , the amplitude of the instrument playing music to be reduced by a factor of $100$ .
Hence, option C is correct.
Additional information: -
Decibel is a logarithmic unit which is used to measure the loudness. It is used in electronics, signals and communications. Decibel is a logarithmic way of describing ratios of power, sound pressure, voltage, intensity, etc. Generally, it is used to measure the loudness of the sound. The level $0dB$ occurs when the intensity of the sound is equal to the reference level of the sound.
Note:
In this question, we have kept in mind that \[d{B^1}\] is the difference in decibel. We have to remember the calculations of logarithmic also such as $\log 10 = 1$ and $\log 1 = 0$.
Complete step by step solution: -
We know that the loudness of sound is given by equation
$dB = 10\log \left( {\dfrac{{{I_0}}}{{{I_1}}}} \right) $
$\Rightarrow dB = 10\log {I_0} - 10\log {I_1} $
We know that intensity is directly proportional to the square of the amplitude i.e.
$I \propto {a^2}$
So,
\[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]
According to the question, if amplitude of sound is multiplied by a factor of$\sqrt {10} $, the decibel level increases by \[10\] units. So,
$d{B^1} = 10\log {\left( {\sqrt {10} } \right)^2} - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10\log 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - dB $
Where \[dB = 10\log {a_1}^2$
Now, if \[70dB\] is being played at a function and if it is reduced to a level of\[30dB\] , then let the amplitude of the instrument playing music be reduced by a factor of $n$.
So,
$d{B^1} = 10\log \left( {\dfrac{{{a_1}^2}}{{{n^2}}}} \right) $
$\Rightarrow d{B^1} = 10\log {a_1}^2 - 10\log {n^2} $
$\Rightarrow d{B^1} = dB - 20\log n $
$\Rightarrow d{B^1} - dB = 20\log n$
$\Rightarrow 70 - 30 = 20\log n $
$\Rightarrow 40 = 20\log n $
$\Rightarrow 2 = \log n $
$\Rightarrow n = {10^2} $
$\Rightarrow n = 100 $
So, loud music of \[70dB\] is being played at a function. To reduce the loudness to a level of\[30dB\] , the amplitude of the instrument playing music to be reduced by a factor of $100$ .
Hence, option C is correct.
Additional information: -
Decibel is a logarithmic unit which is used to measure the loudness. It is used in electronics, signals and communications. Decibel is a logarithmic way of describing ratios of power, sound pressure, voltage, intensity, etc. Generally, it is used to measure the loudness of the sound. The level $0dB$ occurs when the intensity of the sound is equal to the reference level of the sound.
Note:
In this question, we have kept in mind that \[d{B^1}\] is the difference in decibel. We have to remember the calculations of logarithmic also such as $\log 10 = 1$ and $\log 1 = 0$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE