Answer
Verified
431.1k+ views
Hint: In this question, we can solve the equation \[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]. After then we can assume that the amplitude is changed by the factor $n$. Now, we can solve the above equation for $n$.
Complete step by step solution: -
We know that the loudness of sound is given by equation
$dB = 10\log \left( {\dfrac{{{I_0}}}{{{I_1}}}} \right) $
$\Rightarrow dB = 10\log {I_0} - 10\log {I_1} $
We know that intensity is directly proportional to the square of the amplitude i.e.
$I \propto {a^2}$
So,
\[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]
According to the question, if amplitude of sound is multiplied by a factor of$\sqrt {10} $, the decibel level increases by \[10\] units. So,
$d{B^1} = 10\log {\left( {\sqrt {10} } \right)^2} - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10\log 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - dB $
Where \[dB = 10\log {a_1}^2$
Now, if \[70dB\] is being played at a function and if it is reduced to a level of\[30dB\] , then let the amplitude of the instrument playing music be reduced by a factor of $n$.
So,
$d{B^1} = 10\log \left( {\dfrac{{{a_1}^2}}{{{n^2}}}} \right) $
$\Rightarrow d{B^1} = 10\log {a_1}^2 - 10\log {n^2} $
$\Rightarrow d{B^1} = dB - 20\log n $
$\Rightarrow d{B^1} - dB = 20\log n$
$\Rightarrow 70 - 30 = 20\log n $
$\Rightarrow 40 = 20\log n $
$\Rightarrow 2 = \log n $
$\Rightarrow n = {10^2} $
$\Rightarrow n = 100 $
So, loud music of \[70dB\] is being played at a function. To reduce the loudness to a level of\[30dB\] , the amplitude of the instrument playing music to be reduced by a factor of $100$ .
Hence, option C is correct.
Additional information: -
Decibel is a logarithmic unit which is used to measure the loudness. It is used in electronics, signals and communications. Decibel is a logarithmic way of describing ratios of power, sound pressure, voltage, intensity, etc. Generally, it is used to measure the loudness of the sound. The level $0dB$ occurs when the intensity of the sound is equal to the reference level of the sound.
Note:
In this question, we have kept in mind that \[d{B^1}\] is the difference in decibel. We have to remember the calculations of logarithmic also such as $\log 10 = 1$ and $\log 1 = 0$.
Complete step by step solution: -
We know that the loudness of sound is given by equation
$dB = 10\log \left( {\dfrac{{{I_0}}}{{{I_1}}}} \right) $
$\Rightarrow dB = 10\log {I_0} - 10\log {I_1} $
We know that intensity is directly proportional to the square of the amplitude i.e.
$I \propto {a^2}$
So,
\[dB = 10\log {a_0}^2 - 10\log {a_1}^2\]
According to the question, if amplitude of sound is multiplied by a factor of$\sqrt {10} $, the decibel level increases by \[10\] units. So,
$d{B^1} = 10\log {\left( {\sqrt {10} } \right)^2} - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10\log 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - 10\log {a_1}^2 $
$\Rightarrow d{B^1} = 10 - dB $
Where \[dB = 10\log {a_1}^2$
Now, if \[70dB\] is being played at a function and if it is reduced to a level of\[30dB\] , then let the amplitude of the instrument playing music be reduced by a factor of $n$.
So,
$d{B^1} = 10\log \left( {\dfrac{{{a_1}^2}}{{{n^2}}}} \right) $
$\Rightarrow d{B^1} = 10\log {a_1}^2 - 10\log {n^2} $
$\Rightarrow d{B^1} = dB - 20\log n $
$\Rightarrow d{B^1} - dB = 20\log n$
$\Rightarrow 70 - 30 = 20\log n $
$\Rightarrow 40 = 20\log n $
$\Rightarrow 2 = \log n $
$\Rightarrow n = {10^2} $
$\Rightarrow n = 100 $
So, loud music of \[70dB\] is being played at a function. To reduce the loudness to a level of\[30dB\] , the amplitude of the instrument playing music to be reduced by a factor of $100$ .
Hence, option C is correct.
Additional information: -
Decibel is a logarithmic unit which is used to measure the loudness. It is used in electronics, signals and communications. Decibel is a logarithmic way of describing ratios of power, sound pressure, voltage, intensity, etc. Generally, it is used to measure the loudness of the sound. The level $0dB$ occurs when the intensity of the sound is equal to the reference level of the sound.
Note:
In this question, we have kept in mind that \[d{B^1}\] is the difference in decibel. We have to remember the calculations of logarithmic also such as $\log 10 = 1$ and $\log 1 = 0$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE