Answer
Verified
449.7k+ views
Hint: The given problem can be solved by using the concept of the charging and discharging of the capacitors. Capacitors are devices that store the electrical energy in their electric field. This energy depends on the potential difference across the plates of the capacitor and the capacitance of the capacitor.
Complete step by step solution:
Let the two capacitors be ${C_1}$ and ${C_2}$ at some potential differences ${V_1}$ and ${V_2}$ respectively. We are given that both the conductors are joined by a wire. As soon as they are connected by the wire, charge starts to flow from higher potential to lower potential. This flow of charge continues till they reach a common potential difference.
The common potential difference will be:
${V_{common}} = \dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}$
Here, {V_{common}} is the common potential difference.
The initial energy stored in each capacitor is:
${E_1} = \dfrac{1}{2}{C_1}{V_1}^2 and {E_2} = \dfrac{1}{2}{C_2}{V_2}^2$
Here, ${E_1}$ and ${E_2}$ are the initial energy stored in both the capacitors.
After joining the wire, both the capacitors will reach a point of common potential difference, therefore the final energy in both the capacitors will be given as
${E_{final}} = \dfrac{1}{2}{C_1}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2} + \dfrac{1}{2}{C_2}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
$ \Rightarrow {E_{final}} = \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
Here, ${E_{final}}$ is the final energy stored in the capacitors.
The loss in energy will be given by the difference between initial energy and final energy;
$\left( {{E_1} + {E_2}} \right) - {E_{final}} = \left( {\dfrac{1}{2}{C_1}{V_1}^2 + \dfrac{1}{2}{C_2}{V_2}^2} \right) - \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{2}\left( {{C_1}{V_1}^2 + {C_2}{V_2}^2} \right) - \left[ {\left( {{C_1} + {C_2}} \right){{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)}^2}} \right]$
On solving the equation, we have
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left[ {\left( {{C_1}^2{V_1}^2 + {C_2}{C_1}{V_2}^2 + {C_2}{C_1}{V_1}^2 + {C_2}^2{V_2}^2} \right) - \left( {{C_1}^2{V_1}^2 + {C_2}{V_2}^2 + 2{C_1}{C_2}{V_1}{V_2}} \right)} \right]$
$\Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left( {{C_1}{C_2}{V_2}^2 + {C_1}{C_2}{V_1}^2 - 2{C_1}{C_2}{V_1}{V_2}} \right)$
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}{C_1}{C_2}{\left( {{V_1} - {V_2}} \right)^2}$
This is the required formula for loss of energy on joining of two charged conductors by a wire.
Note: In the derived formula, the capacitances cannot be negative individually. Also, the value of ${\left( {{V_1} - {V_2}} \right)^2}$ will be non-negative as it is a square value, this implies that the final value will be positive. Thus, initial energy was greater than final energy. Also, for ${V_1}$ = ${V_2}$ , the difference in energy will be zero. This means that no loss of energy takes place as there is no potential difference initially, there will be no flow of current.
Complete step by step solution:
Let the two capacitors be ${C_1}$ and ${C_2}$ at some potential differences ${V_1}$ and ${V_2}$ respectively. We are given that both the conductors are joined by a wire. As soon as they are connected by the wire, charge starts to flow from higher potential to lower potential. This flow of charge continues till they reach a common potential difference.
The common potential difference will be:
${V_{common}} = \dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}$
Here, {V_{common}} is the common potential difference.
The initial energy stored in each capacitor is:
${E_1} = \dfrac{1}{2}{C_1}{V_1}^2 and {E_2} = \dfrac{1}{2}{C_2}{V_2}^2$
Here, ${E_1}$ and ${E_2}$ are the initial energy stored in both the capacitors.
After joining the wire, both the capacitors will reach a point of common potential difference, therefore the final energy in both the capacitors will be given as
${E_{final}} = \dfrac{1}{2}{C_1}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2} + \dfrac{1}{2}{C_2}{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
$ \Rightarrow {E_{final}} = \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
Here, ${E_{final}}$ is the final energy stored in the capacitors.
The loss in energy will be given by the difference between initial energy and final energy;
$\left( {{E_1} + {E_2}} \right) - {E_{final}} = \left( {\dfrac{1}{2}{C_1}{V_1}^2 + \dfrac{1}{2}{C_2}{V_2}^2} \right) - \dfrac{1}{2}\left( {{C_1} + {C_2}} \right){\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)^2}$
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{2}\left( {{C_1}{V_1}^2 + {C_2}{V_2}^2} \right) - \left[ {\left( {{C_1} + {C_2}} \right){{\left( {\dfrac{{{C_1}{V_1} + {C_2}{V_2}}}{{{C_1} + {C_2}}}} \right)}^2}} \right]$
On solving the equation, we have
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left[ {\left( {{C_1}^2{V_1}^2 + {C_2}{C_1}{V_2}^2 + {C_2}{C_1}{V_1}^2 + {C_2}^2{V_2}^2} \right) - \left( {{C_1}^2{V_1}^2 + {C_2}{V_2}^2 + 2{C_1}{C_2}{V_1}{V_2}} \right)} \right]$
$\Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}\left( {{C_1}{C_2}{V_2}^2 + {C_1}{C_2}{V_1}^2 - 2{C_1}{C_2}{V_1}{V_2}} \right)$
$ \Rightarrow \left( {{E_1} + {E_2}} \right) - {E_{final}} = \dfrac{1}{{2\left( {{C_1} + {C_2}} \right)}}{C_1}{C_2}{\left( {{V_1} - {V_2}} \right)^2}$
This is the required formula for loss of energy on joining of two charged conductors by a wire.
Note: In the derived formula, the capacitances cannot be negative individually. Also, the value of ${\left( {{V_1} - {V_2}} \right)^2}$ will be non-negative as it is a square value, this implies that the final value will be positive. Thus, initial energy was greater than final energy. Also, for ${V_1}$ = ${V_2}$ , the difference in energy will be zero. This means that no loss of energy takes place as there is no potential difference initially, there will be no flow of current.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE