Answer
Verified
459.3k+ views
Hint:First minima means $n = 1$.
Intensity at secondary minima at \[\theta = \dfrac{{n\lambda }}{a}\]
Complete step by step solution:
Let us consider a point P on screen.
We know, path difference is the difference in distance travelled by the two waves from their source to a particular point on screen. Therefore, path difference at point p denoted by\[\Delta x\].
From the diagram it is evident that \[\Delta x = BC\]
Considering \[\Delta ABC\],
We know, \[\sin \theta = \dfrac{{perpendicular}}{{hypotenuse}}\]
Where: a= width of the slit
\[\Delta x\]= phase difference
Therefore, from the diagram we get: \[\sin \theta = \dfrac{{BC}}{{AB}} = \dfrac{{\Delta x}}{a}\]
Rearranging the equations we get,
\[\Delta x = a\sin \theta \]
We know, due to experimental results we obtain,
Intensity at minima is given by \[\theta = \dfrac{{n\lambda }}{a}\]
Where, n= the number of fringe
\[\lambda \]= wavelength of light used
a= width of the slit
For very small value of \[\theta \], we consider \[\theta \approx \sin \theta \],
And we know,
\[\theta = \dfrac{{n\lambda }}{a}\]
Therefore, it can be implied that,
\[\sin \theta = \dfrac{{n\lambda }}{a}\]
Since, the question states first minima, we take n=1 and the equation becomes: \[a\sin \theta = \lambda \]
This is our required equation. Hence, proved.
Additional Information:
Diffraction is defined as the spreading of light waves when it passes through a narrow slit or an obstacle.
There are mainly two kinds of diffraction-
(i) Fraunhofer Diffraction
(ii) Fresnel Diffraction
Huygens’s principle states that each point of the wave front sends various wavelets in various directions, each of these wavelets superimpose on the screen to give rise to Diffraction.
Note: The question asks to find the expression for the first minima only.
When a monochromatic light is incident on a single slit, the light passing falls on the screen, and on superimposing, diffraction pattern is obtained.
Intensity at secondary minima at \[\theta = \dfrac{{n\lambda }}{a}\]
Complete step by step solution:
Let us consider a point P on screen.
We know, path difference is the difference in distance travelled by the two waves from their source to a particular point on screen. Therefore, path difference at point p denoted by\[\Delta x\].
From the diagram it is evident that \[\Delta x = BC\]
Considering \[\Delta ABC\],
We know, \[\sin \theta = \dfrac{{perpendicular}}{{hypotenuse}}\]
Where: a= width of the slit
\[\Delta x\]= phase difference
Therefore, from the diagram we get: \[\sin \theta = \dfrac{{BC}}{{AB}} = \dfrac{{\Delta x}}{a}\]
Rearranging the equations we get,
\[\Delta x = a\sin \theta \]
We know, due to experimental results we obtain,
Intensity at minima is given by \[\theta = \dfrac{{n\lambda }}{a}\]
Where, n= the number of fringe
\[\lambda \]= wavelength of light used
a= width of the slit
For very small value of \[\theta \], we consider \[\theta \approx \sin \theta \],
And we know,
\[\theta = \dfrac{{n\lambda }}{a}\]
Therefore, it can be implied that,
\[\sin \theta = \dfrac{{n\lambda }}{a}\]
Since, the question states first minima, we take n=1 and the equation becomes: \[a\sin \theta = \lambda \]
This is our required equation. Hence, proved.
Additional Information:
Diffraction is defined as the spreading of light waves when it passes through a narrow slit or an obstacle.
There are mainly two kinds of diffraction-
(i) Fraunhofer Diffraction
(ii) Fresnel Diffraction
Huygens’s principle states that each point of the wave front sends various wavelets in various directions, each of these wavelets superimpose on the screen to give rise to Diffraction.
Note: The question asks to find the expression for the first minima only.
When a monochromatic light is incident on a single slit, the light passing falls on the screen, and on superimposing, diffraction pattern is obtained.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Which of the following reagents cannot distinguish class 12 chemistry CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE