Answer
Verified
449.7k+ views
Hint: Here we can see secant and cosecant are the reciprocals of cosine and sine respectively. So we can replace them. Then we can replace the angle \[144\] by $180 - 36$. So we can apply equations of $\cos 2\theta $ and $\sin 2\theta $. Then solving using trigonometric relations we get the answer.
Formula used: For any angle $\theta $ we have the following trigonometric relations.
$\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
$\cos (180 - \theta ) = - \cos \theta $ and $\sin (180 - \theta ) = \sin \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step solution:
We have to find the value of $(\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }})$.
Since $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$, we can write
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos 144^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin144}}^\circ }}{{{\text{sin18}}^\circ }}$
We can replace \[144\] by $180 - 36$. So we have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos (180 - 36)^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}(180 - 36)^\circ }}{{{\text{sin18}}^\circ }}$
For angles less than ${90^ \circ }$, $180 - \theta $ belongs to the second quadrant.
In the second quadrant sine and cosine values are positive and all other values are negative.
We know $\cos (180 - \theta ) = - \cos \theta $ and $\sin (180 - \theta ) = \sin \theta $
So we get from the above equation,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - \dfrac{{\cos 36^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}36^\circ }}{{{\text{sin18}}^\circ }}$
Now we have the equations:
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these equations we can write,
$\Rightarrow$$\cos 36^\circ = {\cos ^2}18^\circ - {\sin ^2}18^\circ $
$\Rightarrow$$\sin 36^\circ = 2\sin 18^\circ \cos 18^\circ $
Substituting these in the above equation we have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - (\dfrac{{{{\cos }^2}18^\circ - {{\sin }^2}18^\circ }}{{\cos 18^\circ }}) + \dfrac{{2\sin 18^\circ \cos 18^\circ }}{{{\text{sin18}}^\circ }}$
Cancelling $\sin 18^\circ $ from numerator and denominator on the second term of right hand side of the above equation,
We have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ }}{{\cos 18^\circ }} + 2\cos 18^\circ $
Simplifying the above equation we get,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ + 2{{\cos }^2}18^\circ }}{{\cos 18^\circ }}$
$ \Rightarrow \dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ + {{\cos }^2}18^\circ }}{{\cos 18^\circ }}$
Also we know that
$sin^2 \theta + cos^2 \theta =1$
Using this result in the above equation we get,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{1}{{\cos 18^\circ }}$
$\sec \theta = \dfrac{1}{{\cos \theta }} $
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \sec 18^\circ $
Thus we get the solution.
$\therefore $ The answer is option A.
Note: We changed the trigonometric ratios to \[\sin \] and $\cos $ so that we can simplify easily. There are different trigonometric rules to solve these types of problems. We have to choose the appropriate equations in each step. For $\cos 2\theta $ we have four equations. But here we chose this one so that we can simplify the answer.
Formula used: For any angle $\theta $ we have the following trigonometric relations.
$\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$
$\cos (180 - \theta ) = - \cos \theta $ and $\sin (180 - \theta ) = \sin \theta $
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step solution:
We have to find the value of $(\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }})$.
Since $\sec \theta = \dfrac{1}{{\cos \theta }}$ and ${\text{cosec}}\theta = \dfrac{1}{{\sin \theta }}$, we can write
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos 144^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin144}}^\circ }}{{{\text{sin18}}^\circ }}$
We can replace \[144\] by $180 - 36$. So we have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{\cos (180 - 36)^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}(180 - 36)^\circ }}{{{\text{sin18}}^\circ }}$
For angles less than ${90^ \circ }$, $180 - \theta $ belongs to the second quadrant.
In the second quadrant sine and cosine values are positive and all other values are negative.
We know $\cos (180 - \theta ) = - \cos \theta $ and $\sin (180 - \theta ) = \sin \theta $
So we get from the above equation,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - \dfrac{{\cos 36^\circ }}{{\cos 18^\circ }} + \dfrac{{{\text{sin}}36^\circ }}{{{\text{sin18}}^\circ }}$
Now we have the equations:
$\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $
$\sin 2\theta = 2\sin \theta \cos \theta $
Using these equations we can write,
$\Rightarrow$$\cos 36^\circ = {\cos ^2}18^\circ - {\sin ^2}18^\circ $
$\Rightarrow$$\sin 36^\circ = 2\sin 18^\circ \cos 18^\circ $
Substituting these in the above equation we have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = - (\dfrac{{{{\cos }^2}18^\circ - {{\sin }^2}18^\circ }}{{\cos 18^\circ }}) + \dfrac{{2\sin 18^\circ \cos 18^\circ }}{{{\text{sin18}}^\circ }}$
Cancelling $\sin 18^\circ $ from numerator and denominator on the second term of right hand side of the above equation,
We have,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ }}{{\cos 18^\circ }} + 2\cos 18^\circ $
Simplifying the above equation we get,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ - {{\cos }^2}18^\circ + 2{{\cos }^2}18^\circ }}{{\cos 18^\circ }}$
$ \Rightarrow \dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{{{{\sin }^2}18^\circ + {{\cos }^2}18^\circ }}{{\cos 18^\circ }}$
Also we know that
$sin^2 \theta + cos^2 \theta =1$
Using this result in the above equation we get,
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \dfrac{1}{{\cos 18^\circ }}$
$\sec \theta = \dfrac{1}{{\cos \theta }} $
$\Rightarrow$$\dfrac{{\sec 18^\circ }}{{\sec 144^\circ }} + \dfrac{{{\text{cosec18}}^\circ }}{{{\text{cosec144}}^\circ }} = \sec 18^\circ $
Thus we get the solution.
$\therefore $ The answer is option A.
Note: We changed the trigonometric ratios to \[\sin \] and $\cos $ so that we can simplify easily. There are different trigonometric rules to solve these types of problems. We have to choose the appropriate equations in each step. For $\cos 2\theta $ we have four equations. But here we chose this one so that we can simplify the answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers