Answer
Verified
495.3k+ views
Hint: Find the center and the radius of the circle from the equation of the circle with the given quantities. Differentiate them, find the value of k and substitute it in the equation of the circle, where k is the center of the circle.
“Complete step-by-step answer:”
We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]
Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.
Given the line \[y=2\] at point (0, 2) it touches the circle.
Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.
Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]
Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],
Radius of circle = Distance between these 2 points,
\[\begin{align}
& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\
& =\sqrt{{{(2-k)}^{2}}}=2-k \\
\end{align}\]
Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).
\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]
We know \[\begin{align}
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\
\end{align}\]
Cancel out the like terms,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\
\end{align}\]
Now let us differentiate both sides of equation (2).
\[\begin{align}
& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\
& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\
\end{align}\]
Divide the expression by 2, we get,
\[\begin{align}
& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\
& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\
& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\
& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\
\end{align}\]
Now let us go back to equation (2).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\
& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\
\end{align}\]
Now let us substitute the value of k in equation (4) from equation (3).
\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]
Open the brackets and simplify the expression.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\
& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\
& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\
& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\
& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\
& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\
& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\
& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\
& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\
\end{align}\]
Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).
Option D is the correct answer.
Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.
“Complete step-by-step answer:”
We know the equation of a circle is \[{{(x-a)}^{2}}+{{(y-b)}^{2}}={{r}^{2}}........(1)\]
Here the center of the family of circles will lie on the y-axis, so it can be taken of the form (0, k) where k is a constant.
Given the line \[y=2\] at point (0, 2) it touches the circle.
Hence the radius of the circle lies from the center (0, k) to the point where the line touches at (0, 2). So by using the distance formula, we can find the radius of the circle.
Distance formula \[=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{({{y}_{2}}-{{y}_{1}})}^{2}}},\]
Where \[({{x}_{1}},{{y}_{1}})=(0,k)\] and\[({{x}_{2}},{{y}_{2}})=(0,2)\],
Radius of circle = Distance between these 2 points,
\[\begin{align}
& =\sqrt{{{(0-0)}^{2}}+{{(2-k)}^{2}}} \\
& =\sqrt{{{(2-k)}^{2}}}=2-k \\
\end{align}\]
Hence the radius of the circle is \[2-k\] and center \[(0,k)\]. Substitute these values in the equation of the circle, i.e. in equation (1).
\[{{(x-0)}^{2}}+{{(y-k)}^{2}}={{(2-k)}^{2}}\]
We know \[\begin{align}
& {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \\
& \Rightarrow {{x}^{2}}+({{y}^{2}}-2ky+{{k}^{2}})=4-4k+{{k}^{2}} \\
\end{align}\]
Cancel out the like terms,
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky+4k-4=0 \\
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k......(2) \\
\end{align}\]
Now let us differentiate both sides of equation (2).
\[\begin{align}
& \dfrac{d}{dx}({{x}^{2}}+{{y}^{2}}-2ky)=\dfrac{d}{dx}(4-4k) \\
& 2x+2y.\dfrac{dy}{dx}-2k.\dfrac{dy}{dx}=0-0 \\
\end{align}\]
Divide the expression by 2, we get,
\[\begin{align}
& x+y.\dfrac{dy}{dx}-k.\dfrac{dy}{dx}=0 \\
& \therefore k.\dfrac{dy}{dx}=x+y.\dfrac{dy}{dx} \\
& k=\dfrac{x+y.\dfrac{dy}{dx}}{\dfrac{dy}{dx}}=x.\dfrac{dx}{dy}+y \\
& \therefore k=x.\dfrac{dx}{dy}+y.....(3) \\
\end{align}\]
Now let us go back to equation (2).
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2ky=4-4k \\
& \Rightarrow {{x}^{2}}+{{y}^{2}}-2ky-4-4k=0 \\
& {{x}^{2}}+{{y}^{2}}-2(ky+2-2k)=0.......(4) \\
\end{align}\]
Now let us substitute the value of k in equation (4) from equation (3).
\[{{x}^{2}}+{{y}^{2}}-2\left[ y\left( x.\dfrac{dx}{dy}+y \right)-2\left( x.\dfrac{dx}{dy}+y \right)+2 \right]=0\]
Open the brackets and simplify the expression.
\[\begin{align}
& {{x}^{2}}+{{y}^{2}}-2\left[ xy.\dfrac{dx}{dy}+{{y}^{2}}-2x.\dfrac{dx}{dy}-2y+2 \right]=0 \\
& {{x}^{2}}+{{y}^{2}}-2xy.\dfrac{dx}{dy}-2{{y}^{2}}+4x.\dfrac{dx}{dy}+4y-4=0 \\
& \left( {{x}^{2}}+{{y}^{2}}-2{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x.\dfrac{dx}{dy} \right)=0 \\
& \left( {{x}^{2}}-{{y}^{2}}+4y-4 \right)-2\left( xy.\dfrac{dx}{dy}-2x\dfrac{dx}{dy} \right)=0 \\
& {{x}^{2}}-\left( {{y}^{2}}-4y+4 \right)-2x\dfrac{dx}{dy}(y-2)=0 \\
& \because {{y}^{2}}-4y+4={{(y-2)}^{2}}\left[ \because {{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \right] \\
& \Rightarrow {{x}^{2}}-{{(y-2)}^{2}}-2x\dfrac{dx}{dy}(y-2)=0 \\
& {{x}^{2}}-(y-2)\left[ \left( y-2 \right)+2x\dfrac{dx}{dy} \right]=0 \\
& {{x}^{2}}+(y-2)\left[ 2-2x.\dfrac{dx}{dy}-y \right]=0 \\
\end{align}\]
Hence we got the differential equation of the family of circles touching the line \[y=2\] at (0, 2).
Option D is the correct answer.
Note: It is said that the circle touches the line y=2, we have not been given the center of the circle but that it lies on y axis, x=0. So the center becomes (0, k) where k is a constant. So if a circle touches the line y=2, then the radius of the circle stretches from (0, k) to the line y=2.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE