Answer
Verified
478.8k+ views
Hint: In this question, the function is the power of the $\log x$ function of x. Therefore, in this case, we can use the chain rule by defining suitable variables and then simplify it to obtain the required answer.
Complete step-by-step answer:
In the question, we have to differentiate ${{\left( \log x \right)}^{x}}$ with respect to $\log x$ i.e. we have to find $\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}$.
Now, we know that if u and v are two functions of x, then
$\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}..............(1.1)$
Therefore, taking $u={{\left( \log x \right)}^{x}}$ and $v=\log x$ in equation (1.1), we obtain
$\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{d{{\left( \log x \right)}^{x}}}{dx}}{\dfrac{d\left( \log x \right)}{dx}}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}................(1.2)$
We know that for any numbers a and b
$\log \left( {{a}^{b}} \right)=b\log \left( a \right)..............(1.2)$
Now, we have defined $u$ as $u={{\left( \log x \right)}^{x}}$. Taking logarithm on both sides and using equation (1.2), we obtain
$\log u=\log \left( {{\left( \log x \right)}^{x}} \right)=x\log \left( \log x \right).....(1.3)$
Now, the derivative of log function is given by
$\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.4)$
The chain rules is stated as
$\dfrac{d\left( f(g(x)) \right)}{dx}=\dfrac{df(g)}{dg}\times \dfrac{dg(x)}{dx}........(1.5)$
And the derivative of the product of two functions is given by
$\dfrac{d\left( f(x)g(x) \right)}{dx}=g(x)\dfrac{df(x)}{dx}+f(x)\dfrac{dg(x)}{dx}...........(1.6)$
Therefore, differentiating both sides of equation (1.3) and using equations (1.4), (1.5) and (1.6), we get
\[\begin{align}
& \log u=x\log \left( \log x \right) \\
& \Rightarrow \dfrac{d\log u}{dx}=\dfrac{d\left( x\log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{d\log u}{du}\dfrac{du}{dx}=\log \left( \log x \right)\dfrac{d\left( x
\right)}{dx}+x\dfrac{d\left( \log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)\times 1+x\times
\dfrac{d\left( \log \left( \log x \right) \right)}{d\log x}\dfrac{d\log x}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)+x\times \dfrac{1}{\log x}\times \dfrac{1}{x} \\
& \Rightarrow \dfrac{du}{dx}=u\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)={{\left(
\log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right).....(1.7) \\
\end{align}\]
Similarly, in the denominator, we can use equation (1.4) to obtain
$\dfrac{dv}{dx}=\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.8)$
Therefore, from equations (1.2), (1.7) and (1.8), we obtain
$\begin{align}
& \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}=\dfrac{{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)}{\dfrac{1}{x}} \\
& \Rightarrow \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=x{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right) \\
\end{align}$
Which is the required answer to this question.
Note: In this case, we should note that we should simply take $\log x$ as a constant and use the derivative of the xth power of a constant as $\dfrac{d\left( {{a}^{x}} \right)}{dx}={{a}^{x}}\log a$ because in this formula a is a constant whereas in the question $\log x$ is not a constant but is a function of x.
Complete step-by-step answer:
In the question, we have to differentiate ${{\left( \log x \right)}^{x}}$ with respect to $\log x$ i.e. we have to find $\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}$.
Now, we know that if u and v are two functions of x, then
$\dfrac{du}{dv}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}..............(1.1)$
Therefore, taking $u={{\left( \log x \right)}^{x}}$ and $v=\log x$ in equation (1.1), we obtain
$\dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{d{{\left( \log x \right)}^{x}}}{dx}}{\dfrac{d\left( \log x \right)}{dx}}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}................(1.2)$
We know that for any numbers a and b
$\log \left( {{a}^{b}} \right)=b\log \left( a \right)..............(1.2)$
Now, we have defined $u$ as $u={{\left( \log x \right)}^{x}}$. Taking logarithm on both sides and using equation (1.2), we obtain
$\log u=\log \left( {{\left( \log x \right)}^{x}} \right)=x\log \left( \log x \right).....(1.3)$
Now, the derivative of log function is given by
$\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.4)$
The chain rules is stated as
$\dfrac{d\left( f(g(x)) \right)}{dx}=\dfrac{df(g)}{dg}\times \dfrac{dg(x)}{dx}........(1.5)$
And the derivative of the product of two functions is given by
$\dfrac{d\left( f(x)g(x) \right)}{dx}=g(x)\dfrac{df(x)}{dx}+f(x)\dfrac{dg(x)}{dx}...........(1.6)$
Therefore, differentiating both sides of equation (1.3) and using equations (1.4), (1.5) and (1.6), we get
\[\begin{align}
& \log u=x\log \left( \log x \right) \\
& \Rightarrow \dfrac{d\log u}{dx}=\dfrac{d\left( x\log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{d\log u}{du}\dfrac{du}{dx}=\log \left( \log x \right)\dfrac{d\left( x
\right)}{dx}+x\dfrac{d\left( \log \left( \log x \right) \right)}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)\times 1+x\times
\dfrac{d\left( \log \left( \log x \right) \right)}{d\log x}\dfrac{d\log x}{dx} \\
& \Rightarrow \dfrac{1}{u}\dfrac{du}{dx}=\log \left( \log x \right)+x\times \dfrac{1}{\log x}\times \dfrac{1}{x} \\
& \Rightarrow \dfrac{du}{dx}=u\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)={{\left(
\log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right).....(1.7) \\
\end{align}\]
Similarly, in the denominator, we can use equation (1.4) to obtain
$\dfrac{dv}{dx}=\dfrac{d\log x}{dx}=\dfrac{1}{x}..............(1.8)$
Therefore, from equations (1.2), (1.7) and (1.8), we obtain
$\begin{align}
& \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=\dfrac{\dfrac{du}{dx}}{\dfrac{dv}{dx}}=\dfrac{{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right)}{\dfrac{1}{x}} \\
& \Rightarrow \dfrac{d{{\left( \log x \right)}^{x}}}{d\left( \log x \right)}=x{{\left( \log x \right)}^{x}}\left( \log \left( \log x \right)+\dfrac{1}{\log x} \right) \\
\end{align}$
Which is the required answer to this question.
Note: In this case, we should note that we should simply take $\log x$ as a constant and use the derivative of the xth power of a constant as $\dfrac{d\left( {{a}^{x}} \right)}{dx}={{a}^{x}}\log a$ because in this formula a is a constant whereas in the question $\log x$ is not a constant but is a function of x.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE