Answer
Verified
500.1k+ views
Hint- Here, we will proceed by simplifying the given function (which needs to be differentiated) with the help of a proper substitution.
Let the function be \[y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)} \right]\]
Put $x = a\sin \theta $ in the above function, we get
\[ \Rightarrow y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{\sqrt {{a^2} - {{\left( {a\sin \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{\sqrt {{a^2}\left[ {1 - {{\left( {\sin \theta } \right)}^2}} \right]} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\sqrt {1 - {{\left( {\sin \theta } \right)}^2}} }}} \right)} \right]\]
As, we know that ${\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \Rightarrow 1 - {\left( {\sin \theta } \right)^2} = {\left( {\cos \theta } \right)^2}$
Using this above identity to simplify the function whose differentiation needs to be carried out
\[
\Rightarrow y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\sqrt {1 - {{\left( {\sin \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {{{\left( {\cos \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \\
\Rightarrow y = \theta {\text{ }} \to {\text{(1)}} \\
\]
Also, we know that $x = a\sin \theta \Rightarrow \sin \theta = \dfrac{x}{a} \Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right){\text{ }} \to {\text{(2)}}$
Substituting the value obtained from equation (2) in equation (1), we get
\[ \Rightarrow y = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right){\text{ }} \to {\text{(3)}}\]
Also we know that $\dfrac{{d\left[ {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right]}}{{dx}} = \left[ {\dfrac{1}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }}} \right] \times \left[ {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}} \right]$
Differentiating both sides of equation (3) with respect to $x$, we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left[ {{{\sin }^{ - 1}}\left( {\dfrac{x}{a}} \right)} \right]}}{{dx}}{\text{ = }}\left[ {\dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{x}{a}} \right)}^2}} }}} \right] \times \left[ {\dfrac{{d\left( {\dfrac{x}{a}} \right)}}{{dx}}} \right] = \left[ {\dfrac{1}{{\sqrt {\left( {\dfrac{{{a^2} - {x^2}}}{{{a^2}}}} \right)} }}} \right] \times \left[ {\dfrac{1}{a}} \right] = \left[ {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }}} \right] \times \left[ {\dfrac{1}{a}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {{a^2} - {x^2}} }} \\
\]
Therefore, the differentiation of the given function \[\left[ {{{\tan }^{ - 1}}\left( {\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)} \right]\], with respect to $x$ is \[\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}\].
Note- In this problem we have especially substituted $x = a\sin \theta $ because due to this substitution, the function inside the tangent inverse will be converted into tangent so that these two will cancel out with each other and we will be left with the angle which is in a much simplified form.
Let the function be \[y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)} \right]\]
Put $x = a\sin \theta $ in the above function, we get
\[ \Rightarrow y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{\sqrt {{a^2} - {{\left( {a\sin \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{\sqrt {{a^2}\left[ {1 - {{\left( {\sin \theta } \right)}^2}} \right]} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\sqrt {1 - {{\left( {\sin \theta } \right)}^2}} }}} \right)} \right]\]
As, we know that ${\left( {\sin \theta } \right)^2} + {\left( {\cos \theta } \right)^2} = 1 \Rightarrow 1 - {\left( {\sin \theta } \right)^2} = {\left( {\cos \theta } \right)^2}$
Using this above identity to simplify the function whose differentiation needs to be carried out
\[
\Rightarrow y = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{a\sin \theta }}{{a\sqrt {1 - {{\left( {\sin \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\sqrt {{{\left( {\cos \theta } \right)}^2}} }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)} \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \\
\Rightarrow y = \theta {\text{ }} \to {\text{(1)}} \\
\]
Also, we know that $x = a\sin \theta \Rightarrow \sin \theta = \dfrac{x}{a} \Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right){\text{ }} \to {\text{(2)}}$
Substituting the value obtained from equation (2) in equation (1), we get
\[ \Rightarrow y = {\sin ^{ - 1}}\left( {\dfrac{x}{a}} \right){\text{ }} \to {\text{(3)}}\]
Also we know that $\dfrac{{d\left[ {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right]}}{{dx}} = \left[ {\dfrac{1}{{\sqrt {1 - {{\left( {f\left( x \right)} \right)}^2}} }}} \right] \times \left[ {\dfrac{{d\left( {f\left( x \right)} \right)}}{{dx}}} \right]$
Differentiating both sides of equation (3) with respect to $x$, we get
\[
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d\left[ {{{\sin }^{ - 1}}\left( {\dfrac{x}{a}} \right)} \right]}}{{dx}}{\text{ = }}\left[ {\dfrac{1}{{\sqrt {1 - {{\left( {\dfrac{x}{a}} \right)}^2}} }}} \right] \times \left[ {\dfrac{{d\left( {\dfrac{x}{a}} \right)}}{{dx}}} \right] = \left[ {\dfrac{1}{{\sqrt {\left( {\dfrac{{{a^2} - {x^2}}}{{{a^2}}}} \right)} }}} \right] \times \left[ {\dfrac{1}{a}} \right] = \left[ {\dfrac{a}{{\sqrt {{a^2} - {x^2}} }}} \right] \times \left[ {\dfrac{1}{a}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\sqrt {{a^2} - {x^2}} }} \\
\]
Therefore, the differentiation of the given function \[\left[ {{{\tan }^{ - 1}}\left( {\dfrac{x}{{\sqrt {{a^2} - {x^2}} }}} \right)} \right]\], with respect to $x$ is \[\dfrac{1}{{\sqrt {{a^2} - {x^2}} }}\].
Note- In this problem we have especially substituted $x = a\sin \theta $ because due to this substitution, the function inside the tangent inverse will be converted into tangent so that these two will cancel out with each other and we will be left with the angle which is in a much simplified form.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers