Answer
Verified
469.5k+ views
Hint: Here, the given function is inverse function so calculation will be tough but we can solve the question by using some standard results of trigonometric ratios and then we will substitute all the values in first principle formula to evaluate the derivative of $ {{\sec }^{-1}}x $ with respect to x using first principle.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Complete step-by-step answer:
Before attempting this question let us see what is the first principle of derivative.
Suppose we have a real valued function f , the function defined by $ \underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ wherever the limit exist is defined to be the derivative of the function f at x and is denoted by $ \dfrac{dy}{dx} $ or f ’ (x). this definition of derivative is also called the first principle of derivative thus, $ \dfrac{dy}{dx}=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(x+h)-f(x)}{h} $ .
Now, before we start solving we see some identities which will help us in solving the question
We know that, $ 1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $
Re - arranging the identity, we get
$ {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 $
$ {{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1 $
$ \tan \theta =\sqrt{{{\sec }^{2}}\theta -1} $ …… ( i )
Let, $ \sec \theta =x $
Taking $ {{\sec }^{-1}} $ on both sides we get
$ \theta ={{\sec }^{-1}}x $
Putting $ \sec \theta =x $ in equation ( i ), we get
$ \tan \theta =\sqrt{{{x}^{2}}-1} $
Taking $ {{\tan }^{-1}} $ on both side we get
$ \theta ={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Or $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $
Now , considering all the above equations we can now solve the derivative of $ {{\sec }^{-1}}x $ w.r.t x,
Now, according to first principle
\[\dfrac{d}{dx}({{\sec }^{-1}}x)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{se{{c}^{-1}}(x+h)-{{\sec }^{-1}}(x)}{h}\]
Putting $ {{\sec }^{-1}}x={{\tan }^{-1}}\sqrt{{{x}^{2}}-1} $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\sqrt{{{(x+h)}^{2}}-1}-{{\tan }^{-1}}\sqrt{({{x}^{2}}-1)}}{h}\]
We know that, $ {{\tan }^{-1}}A-{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A-B}{1+A\cdot B} \right) $
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h}\]
Multiplying numerator and denominator by \[\dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}{h\left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
We know that, \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{{{\tan }^{-1}}x}{x}=1\], so
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)}}{1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)}} \right)\]
Multiplying numerator and denominator by \[\sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)}\], we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{\left( \sqrt{{{(x+h)}^{2}}-1}-\sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving using identity $ {{a}^{2}}-{{b}^{2}}=(a+b)(a-b) $ , we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-1-{{x}^{2}}+1}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{{{(x+h)}^{2}}-{{x}^{2}}}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
\[=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{1}{h}\cdot \left( \dfrac{h(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On, solving we get
\[=\underset{h\to 0}{\mathop{\lim }}\,\left( \dfrac{(2x+h)}{\left( 1+\sqrt{{{(x+h)}^{2}}-1}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{{{(x+h)}^{2}}-1}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]…….( ii )
Now putting limits \[h\to 0\]in equation ( ii ), we get
\[=\left( \dfrac{2x}{\left( 1+\sqrt{({{x}^{2}}-1)}\cdot \sqrt{({{x}^{2}}-1)} \right)\left( \sqrt{({{x}^{2}}-1)}+\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On solving,
\[=\left( \dfrac{2x}{\left( 1+({{x}^{2}}-1) \right)\left( 2\sqrt{({{x}^{2}}-1)} \right)} \right)\]
On simplifying, we get
\[=\dfrac{1}{x\sqrt{({{x}^{2}}-1)}}\] , for $ x\ge 1 $ as $ {{\sec }^{-1}}x={{\sec }^{-1}}x,x\ge 1 $
Note: Solving differentials of inverse functions using first principle are tough so there might be chances of calculation error which can affect the solving of the question so one must avoid the errors and trigonometric identities must be known so that they can be used to simplify the terms.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers