Answer
Verified
456k+ views
Hint: potential energy is the energy required by the body in order to take it from the infinity to a specific position according to our need. Torque is the rotational analogue for the force in mechanics. It is the force required for the body in order to rotate in a specific way. This all will help you in answering this question.
Complete answer:
The force experienced by the charges can be shown as \[qE\] and \[-qE\] , as represented in the diagram.
\[\tau =p\times E\]
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{{{\tau }_{ext}}\left( \theta \right)}d\theta \]
Substituting the value of the torque in this will give,
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{pE\sin \theta }d\theta =pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
As we all know that the work done in taking a system of charges from infinity to a specific configuration is explained as the potential energy of the system. That is the potential energy of the system can be shown as,
\[U\left( \theta \right)=pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
Note:
The electric potential and potential energy are not the same. The major difference is that electric potential at a position in an electric field is the measure of work done to take the unit positive charge from infinity to that position. The electric potential energy is defined as the energy that is required to move a charge against the electric field.
Complete answer:
The force experienced by the charges can be shown as \[qE\] and \[-qE\] , as represented in the diagram.
\[\tau =p\times E\]
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{{{\tau }_{ext}}\left( \theta \right)}d\theta \]
Substituting the value of the torque in this will give,
The measure of work done by the external torque can be shown as,
\[W=\int\limits_{{{\theta }_{0}}}^{{{\theta }_{1}}}{pE\sin \theta }d\theta =pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
As we all know that the work done in taking a system of charges from infinity to a specific configuration is explained as the potential energy of the system. That is the potential energy of the system can be shown as,
\[U\left( \theta \right)=pE\left( \cos {{\theta }_{0}}-\cos {{\theta }_{1}} \right)\]
Note:
The electric potential and potential energy are not the same. The major difference is that electric potential at a position in an electric field is the measure of work done to take the unit positive charge from infinity to that position. The electric potential energy is defined as the energy that is required to move a charge against the electric field.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE