Evaluate the expression $\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}-\sqrt{1+x}}}$
Answer
Verified
513k+ views
Hint: Use L’ Hopital Rule in this question, but remember to stop once the $\dfrac{0}{0}$ or $\dfrac{\infty
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
}{\infty }$ form disappears. For that though, confirm if the expression has $\dfrac{0}{0}$ or
$\dfrac{\infty }{\infty }$ form first.
Let’s first of all see if the limit has a $\dfrac{0}{0}$ or $\dfrac{\infty }{\infty }$ form at all. For
that, we’ll simply substitute the limiting value of $x$ that is given to us, and then see if we’re getting and
indeterminate form like the ones mentioned above. Thus, we need to substitute $x=0$ in
$\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\sqrt{1+{{x}^{2}}}-\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}}$.
Doing so, we get,
$=\dfrac{\sqrt{1+0}-\sqrt{1+0}}{\sqrt{1+0}-\sqrt{1+x}}=\dfrac{\sqrt{1}-\sqrt{1}}{\sqrt{1}-\sqrt{1}}$
$=\dfrac{0}{0}$ form
Hence, it is one of the indeterminate forms mentioned above. Since it has the $\dfrac{0}{0}$ form, we
can now find it by using L’ Hopital Rule. However, let’s explore some other methods too.
For the first method, let’s follow the following path.
Take, $\dfrac{\left( \sqrt{1+{{x}^{2}}}-\sqrt{1+x} \right)}{\left( \sqrt{1+{{x}^{3}}}-\sqrt{1+x} \right)}$
Remove the subtraction of radicals by multiplying numerator and denominator by
$\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)$
(That is the product of the conjugates of the numerator and the denominator).
Doing so, we get,
$\dfrac{\left( \left( 1+{{x}^{2}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x}
\right)}{\left( \left( 1+{{x}^{3}} \right)-\left( 1-x \right) \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{x\left( x+1 \right)\left( \sqrt{1+{{x}^{3}}}+\sqrt{1+x} \right)}{x\left( {{x}^{2}}+1 \right)\left(
\sqrt{1+{{x}^{2}}}+\sqrt{1+x} \right)}$
$=\dfrac{(x+1)(\sqrt{1+{{x}^{3}}}+\sqrt{1+x})}{\left( {{x}^{2}}+1 \right)\left( \sqrt{1+{{x}^{2}}}+\sqrt{1+x}
\right)}$
Evaluating the limit as $\left( x\to 0 \right)$, we get
$=\dfrac{(1)(\sqrt{1+0}+\sqrt{1+0})}{\left( 0+1 \right)\left( \sqrt{1+0}+\sqrt{1+0} \right)}$
$\Rightarrow \dfrac{2}{2}=1$
Thus, we found the limit to be $=1$ using this method. Now let’s try another method.
Here’s the alternate method of solving this question :
By plugging in $0$ we get :
$\dfrac{\sqrt{1+{{\left( 0 \right)}^{2}}}-\sqrt{1+0}}{\sqrt{1+{{\left( 0 \right)}^{3}}}-
\sqrt{1+0}}=\dfrac{0}{0}$ form
Let’s use L’ Hopital Rule to solve this. L’ Hopital rule says that $\underset{x\to a}{\mathop{\lim
}}\,\dfrac{f(x)}{g(x)}=\underset{x\to a}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}=\underset{x\to
a}{\mathop{\lim }}\,\dfrac{f''(x)}{g''(x)}=.....$ till our limit loses the indeterminate form. We keep
differentiating the numerator and denominator separately, until the indeterminate form goes away.
Thus, using L – HOPITAL RULE once,
We’ll differentiate numerator and denominator.
Numerator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{2}} \right)}^{-\dfrac{1}{2}}}.2x-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}$
………………..(i)
Denominator: $\dfrac{d}{dx}\left( {{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}-{{\left( 1+x
\right)}^{\dfrac{1}{2}}} \right)$
$=\dfrac{1}{2}{{\left( 1+{{x}^{3}} \right)}^{-\dfrac{1}{2}}}.3{{x}^{2}}-\dfrac{1}{2}{{\left( 1+x \right)}^{-
\dfrac{1}{2}}}.1$
$=\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x
\right)}^{\dfrac{1}{2}}}}$ …………..(ii)
Now, divide both the equation (i) and (ii) we get;
$=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\dfrac{x}{{{\left( 1+{{x}^{2}} \right)}^{\dfrac{1}{2}}}}-
\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{x}^{2}}}{2{{\left( 1+{{x}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+x \right)}^{\dfrac{1}{2}}}}}$
By plugging in zero;
$=\dfrac{\dfrac{0}{{{\left( 1+{{\left( 0 \right)}^{2}} \right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0
\right)}^{\dfrac{1}{2}}}}}{\dfrac{3{{\left( 0 \right)}^{2}}}{2{{\left( 1+{{\left( 0 \right)}^{3}}
\right)}^{\dfrac{1}{2}}}}-\dfrac{1}{2{{\left( 1+0 \right)}^{\dfrac{1}{2}}}}}$
$=\dfrac{-\dfrac{1}{2}}{-\dfrac{1}{2}}=1$
$\therefore \underset{x\to 0}{\mathop{\lim }}\,\left( \dfrac{\sqrt{1+{{x}^{2}}}-
\sqrt{1+x}}{\sqrt{1+{{x}^{3}}}-\sqrt{1+x}} \right)=1$
Therefore, we get the required limit as $1$ from both the methods applied.
Note: In this type of question you can see the form by putting limits and then apply the L – HOSPITAL
RULE, that says
i.e.,$\to \dfrac{\text{differentiate (Numerator)}}{\text{differentiate (Denominator)}}$ till the fraction
loses the indeterminate form. Be careful to not differentiate it further, you might get a zero in the
denominator, in which case the fraction will become undefined itself.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE