Answer
Verified
484.5k+ views
Hint: In order to solve the problem first simplify the terms by the use of logarithmic identities. Try to separate the unknown variable term and proceed to find the answer.
Complete step-by-step answer:
Given equation is \[\log \left( {x + 3} \right) + \log \left( {x - 3} \right) = \log 16\]
We know the identity for sum of the logarithmic terms
$\log a + \log b = \log \left( {ab} \right)$
Using the above formula let us simplify the LHS
$
\Rightarrow \log \left( {x + 3} \right) + \log \left( {x - 3} \right) = \log 16 \\
\Rightarrow \log \left[ {\left( {x + 3} \right)\left( {x - 3} \right)} \right] = \log 16 \\
$
Now we have logarithmic terms on both sides.
As we know the general rule of logarithm which is
$
{\text{if }}\log c = \log d \\
\Rightarrow c = d \\
$
Using the same rule in above equation we get
$
\because \log \left[ {\left( {x + 3} \right)\left( {x - 3} \right)} \right] = \log 16 \\
\Rightarrow \left( {x + 3} \right)\left( {x - 3} \right) = 16 \\
$
Now in order to find the value of x we need to solve the above algebraic equation
\[
\Rightarrow \left( {x + 3} \right)\left( {x - 3} \right) = 16 \\
\Rightarrow {x^2} - {3^2} = 16\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
\Rightarrow {x^2} - 9 = 16 \\
\Rightarrow {x^2} = 16 + 9 = 25 \\
\Rightarrow {x^2} - 25 = 0 \\
\Rightarrow {x^2} - {5^2} = 0 \\
\Rightarrow \left( {x + 5} \right)\left( {x - 5} \right) = 0 \\
\Rightarrow x = 5\& x = - 5 \\
\]
So after solving the algebraic equation we have 2 values of x which are 5 and -5 but when we substitute the value -5 in the given term the value of term becomes $\log \left( { - 5 + 3} \right) = \log \left( { - 2} \right)$ , but the log of negative number does not exist so +5 is the only solution.
Hence, the value of x is 5.
Note: The logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. Students must remember that logarithm of negative numbers does not exist but logarithm of some positive numbers can be negative.
Complete step-by-step answer:
Given equation is \[\log \left( {x + 3} \right) + \log \left( {x - 3} \right) = \log 16\]
We know the identity for sum of the logarithmic terms
$\log a + \log b = \log \left( {ab} \right)$
Using the above formula let us simplify the LHS
$
\Rightarrow \log \left( {x + 3} \right) + \log \left( {x - 3} \right) = \log 16 \\
\Rightarrow \log \left[ {\left( {x + 3} \right)\left( {x - 3} \right)} \right] = \log 16 \\
$
Now we have logarithmic terms on both sides.
As we know the general rule of logarithm which is
$
{\text{if }}\log c = \log d \\
\Rightarrow c = d \\
$
Using the same rule in above equation we get
$
\because \log \left[ {\left( {x + 3} \right)\left( {x - 3} \right)} \right] = \log 16 \\
\Rightarrow \left( {x + 3} \right)\left( {x - 3} \right) = 16 \\
$
Now in order to find the value of x we need to solve the above algebraic equation
\[
\Rightarrow \left( {x + 3} \right)\left( {x - 3} \right) = 16 \\
\Rightarrow {x^2} - {3^2} = 16\left[ {\because \left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}} \right] \\
\Rightarrow {x^2} - 9 = 16 \\
\Rightarrow {x^2} = 16 + 9 = 25 \\
\Rightarrow {x^2} - 25 = 0 \\
\Rightarrow {x^2} - {5^2} = 0 \\
\Rightarrow \left( {x + 5} \right)\left( {x - 5} \right) = 0 \\
\Rightarrow x = 5\& x = - 5 \\
\]
So after solving the algebraic equation we have 2 values of x which are 5 and -5 but when we substitute the value -5 in the given term the value of term becomes $\log \left( { - 5 + 3} \right) = \log \left( { - 2} \right)$ , but the log of negative number does not exist so +5 is the only solution.
Hence, the value of x is 5.
Note: The logarithm is the inverse function to exponentiation. That means the logarithm of a given number x is the exponent to which another fixed number, the base b, must be raised, to produce that number x. Students must remember that logarithm of negative numbers does not exist but logarithm of some positive numbers can be negative.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE