Answer
Verified
492.6k+ views
Hint: To find the value of a given integral, use the substitution method to simplify the given integral by assuming $t=\tan x$. Rewrite the given integral in terms of variable ‘t’. Evaluate the value of integral using the fact that $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$. Rewrite the value of integral in terms of ‘x’.
Complete step-by-step answer:
We have to evaluate the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$. We observe that this is an indefinite integral. An indefinite integral is a function that takes the antiderivative of another function. It represents a family of functions whose derivatives are the function given in the integral.
To find the value of the integral, we will simplify the given integral by substitution method.
Let’s assume that $t=\tan x.....\left( 1 \right)$. We will now differentiate the equation. Thus, we have $\dfrac{dt}{dx}={{\sec }^{2}}x$.
Cross multiplying the terms on both sides of the equality, we have $dt={{\sec }^{2}}xdx.....\left( 2 \right)$.
Substituting equation (1) and (2) in the given integral, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}$.
We know that integral of a function of the form $y={{x}^{n}}$ is $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Substituting $n=\dfrac{3}{2}$ in the above formula, we have $\int{{{x}^{\dfrac{3}{2}}}dx}=\dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{{{t}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Simplifying the above expression, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}$.
We will again substitute $t=\tan x$ in the above equation. Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}=\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Hence, the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$ is $\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Note: The substitution method is used when an integral contains some function and its first derivative. It’s important to keep in mind that the first derivative of $y=\tan x$ is $\dfrac{dy}{dx}={{\sec }^{2}}x$. Otherwise, we won’t be able to solve this question.
Complete step-by-step answer:
We have to evaluate the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$. We observe that this is an indefinite integral. An indefinite integral is a function that takes the antiderivative of another function. It represents a family of functions whose derivatives are the function given in the integral.
To find the value of the integral, we will simplify the given integral by substitution method.
Let’s assume that $t=\tan x.....\left( 1 \right)$. We will now differentiate the equation. Thus, we have $\dfrac{dt}{dx}={{\sec }^{2}}x$.
Cross multiplying the terms on both sides of the equality, we have $dt={{\sec }^{2}}xdx.....\left( 2 \right)$.
Substituting equation (1) and (2) in the given integral, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}$.
We know that integral of a function of the form $y={{x}^{n}}$ is $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$.
Substituting $n=\dfrac{3}{2}$ in the above formula, we have $\int{{{x}^{\dfrac{3}{2}}}dx}=\dfrac{{{x}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{{{t}^{\dfrac{5}{2}}}}{\dfrac{5}{2}}$.
Simplifying the above expression, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}$.
We will again substitute $t=\tan x$ in the above equation. Thus, we have $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}=\int{{{t}^{\dfrac{3}{2}}}dt}=\dfrac{2}{5}{{t}^{\dfrac{5}{2}}}=\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Hence, the value of the integral $\int{{{\tan }^{\dfrac{3}{2}}}x{{\sec }^{2}}xdx}$ is $\dfrac{2}{5}{{\tan }^{\dfrac{5}{2}}}x$.
Note: The substitution method is used when an integral contains some function and its first derivative. It’s important to keep in mind that the first derivative of $y=\tan x$ is $\dfrac{dy}{dx}={{\sec }^{2}}x$. Otherwise, we won’t be able to solve this question.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE