Evaluate the given : \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \]
Answer
Verified
455.1k+ views
Hint: Here, we will use the basic identities of the trigonometric functions to find out the value of the given equation. So we will rewrite the terms given in the equation as a sum of degrees by applying the properties of the trigonometric function. Then we will use the periodicity of the trigonometric function and simplify the equation. We will then substitute the values of the function to get the value of the equation.
Complete step-by-step answer:
Let \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = T\].
First, we will simplify the given equation by writing the trigonometry functions of the equation in the form of the quadrants.
We can write \[\cos 225^\circ = \cos \left( {180^\circ + 45^\circ } \right)\], \[\sin 225^\circ = \sin \left( {180^\circ + 45^\circ } \right)\], \[\tan 495^\circ = \tan \left( {5 \times 90^\circ + 45^\circ } \right)\] and \[\cot 495^\circ = \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]. Therefore, we get
\[ \Rightarrow T = \cos \left( {180^\circ + 45^\circ } \right) - \sin \left( {180^\circ + 45^\circ } \right) + \tan \left( {5 \times 90^\circ + 45^\circ } \right) - \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]
Also we know that \[\cos \left( {180^\circ + \theta } \right) = - \cos \theta \] and \[\sin \left( {180^\circ + \theta } \right) = - \sin \theta \] as in the third quadrant both the sin and the cos function is negative.
\[\tan \left( {5 \times 90^\circ + \theta } \right) = - \cot \theta \] and \[\cot \left( {5 \times 90^\circ + \theta } \right) = - \tan \theta \] as in the second quadrant both the tan and the cot function is negative. Therefore the equation becomes
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) - \left( { - \sin \left( {45^\circ } \right)} \right) - \cot \left( {45^\circ } \right) - \left( { - \tan \left( {45^\circ } \right)} \right)\]
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) + \sin \left( {45^\circ } \right) - \cot \left( {45^\circ } \right) + \tan \left( {45^\circ } \right)\]
Now we will put the values of the trigonometric functions and solve this to get the value of the expression. Therefore, we get
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1\]
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1 = 0\]
\[ \Rightarrow \cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = 0\]
Hence, the value of the equation \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \] is 0.
Note: We should know the different properties of the trigonometric function and also in which quadrant which function is positive or negative as in the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sin and cosec function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive.
Complete step-by-step answer:
Let \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = T\].
First, we will simplify the given equation by writing the trigonometry functions of the equation in the form of the quadrants.
We can write \[\cos 225^\circ = \cos \left( {180^\circ + 45^\circ } \right)\], \[\sin 225^\circ = \sin \left( {180^\circ + 45^\circ } \right)\], \[\tan 495^\circ = \tan \left( {5 \times 90^\circ + 45^\circ } \right)\] and \[\cot 495^\circ = \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]. Therefore, we get
\[ \Rightarrow T = \cos \left( {180^\circ + 45^\circ } \right) - \sin \left( {180^\circ + 45^\circ } \right) + \tan \left( {5 \times 90^\circ + 45^\circ } \right) - \cot \left( {5 \times 90^\circ + 45^\circ } \right)\]
Also we know that \[\cos \left( {180^\circ + \theta } \right) = - \cos \theta \] and \[\sin \left( {180^\circ + \theta } \right) = - \sin \theta \] as in the third quadrant both the sin and the cos function is negative.
\[\tan \left( {5 \times 90^\circ + \theta } \right) = - \cot \theta \] and \[\cot \left( {5 \times 90^\circ + \theta } \right) = - \tan \theta \] as in the second quadrant both the tan and the cot function is negative. Therefore the equation becomes
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) - \left( { - \sin \left( {45^\circ } \right)} \right) - \cot \left( {45^\circ } \right) - \left( { - \tan \left( {45^\circ } \right)} \right)\]
\[ \Rightarrow T = - \cos \left( {45^\circ } \right) + \sin \left( {45^\circ } \right) - \cot \left( {45^\circ } \right) + \tan \left( {45^\circ } \right)\]
Now we will put the values of the trigonometric functions and solve this to get the value of the expression. Therefore, we get
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1\]
\[ \Rightarrow T = - \dfrac{1}{{\sqrt 2 }} + \dfrac{1}{{\sqrt 2 }} - 1 + 1 = 0\]
\[ \Rightarrow \cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ = 0\]
Hence, the value of the equation \[\cos 225^\circ - \sin 225^\circ + \tan 495^\circ - \cot 495^\circ \] is 0.
Note: We should know the different properties of the trigonometric function and also in which quadrant which function is positive or negative as in the first quadrant all the functions i.e. sin, cos, tan, cot, sec, cosec is positive. In the second quadrant, only the sin and cosec function are positive and all the other functions are negative. In the third quadrant, only tan and cot function is positive and in the fourth quadrant, only cos and sec function is positive.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Distinguish between Mitosis and Meiosis class 11 biology CBSE