Answer
Verified
504k+ views
Hint: - Use the property of definite integral \[\int_0^{2a} {f\left( x \right)dx = 2}
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
\int_0^a {f\left( x \right)dx} ,{\text{ if }}f\left( {2a - x} \right) = f\left( x \right)\]
, and \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt\]. Definite integral is the one which has upper and lower limits whereas indefinite integral no upper and lower limits are there.
Let \[I = \int_0^\pi {\log \left( {1 + \cos x} \right)} dx\]
As we know \[\left( {1 + \cos x} \right) = 2{\cos ^2}\left( {\dfrac{x}{2}} \right)\]
Substitute this value in the integral
\[{\text{I = }}\int_0^\pi {\log \left( {2{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)dx} \]
As we know,\[\log \left( {ab} \right) = \log a + \log b\], so apply this property
\[
\Rightarrow {\text{I = }}\int_0^\pi {\left( {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)}
\right) + \log 2} \right)dx} \\
\Rightarrow I = \int_0^\pi {\log \left( {{{\cos }^2}\left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx \\
\]
Now we know \[\log {a^2} = 2\log a\]so apply this property
\[ \Rightarrow I = 2\int_0^\pi {\log \left( {\cos \left( {\dfrac{x}{2}} \right)} \right)} dx +
\int_0^\pi {\log 2} dx\]
Now, let \[\dfrac{x}{2} = t.................\left( 1 \right)\]
If \[x = 0 \Rightarrow t = 0\]
If \[x = \pi \Rightarrow t = \dfrac{\pi }{2}\]
Differentiate equation (1) w.r.t.$x$
\[ \Rightarrow dx = 2dt\]
Substitute these values in the integral
\[
\Rightarrow I = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} 2dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)} dt +
\int_0^\pi {\log 2} dx \\
\Rightarrow I = {I_1} + {I_2} \\
\]
Now first solve \[{I_1}\]
\[ \Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( t \right)} \right)}
dt.................\left( 2 \right)\]
As we know \[\int_0^a {f\left( t \right)} dt = \int_0^a {f\left( {a - t} \right)} dt............\left( 3
\right)\]
Apply this definite integral property in \[{I_1}\]
\[
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos \left( {\dfrac{\pi }{2} - t}
\right)} \right)} dt \\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt.....................\left(
4 \right) \\
\]
Now add equation (2) and (4)
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt +
4\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin t} \right)} dt \\
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t \times \sin t} \right)} dt
\\
\]
As we know \[2\cos t \times \sin t = \sin 2t\]so apply this
\[
\Rightarrow 2{I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}\sin 2t} \right)} dt
\\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin 2t} \right)} dt \\
\]
Let, \[{\text{2t = v}}...........\left( 5 \right)\]
If, \[{\text{ t = 0}} \Rightarrow {\text{v = 0}}\]
If, \[{\text{t = }}\dfrac{\pi }{2} \Rightarrow v = \pi \]
Now, differentiate equation (5) w.r.t.$t$
\[ \Rightarrow {\text{2dt = dv}}\]
So substitute these values in the integral
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^\pi {\log \left( {\sin v} \right)} \dfrac{{dv}}{2} \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log \left( {\sin v} \right)} dv \\
\]
As we know \[\int_0^{2a} {f\left( x \right)dx = 2} \int_0^a {f\left( x \right)dx} ,{\text{ if
}}f\left( {2a - x} \right) = f\left( x \right)\]
So, comparing from above equation $2a = \pi , \Rightarrow a = \dfrac{\pi }{2}$
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin v} \right)} dv\]
Now from equation (3)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\sin \left( {\dfrac{\pi }{2} - v} \right)} \right)} dv \\
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos v} \right)} dv \\
\]
As we know in definite integral we change the variable so we change the variable to $t$ in
the second integral in the above equation.
\[ \Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
2\int_0^{\dfrac{\pi }{2}} {\log \left( {\cos t} \right)} dt\]
From equation (2)
\[
\Rightarrow {I_1} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt +
\dfrac{{{I_1}}}{2} \\
\Rightarrow \dfrac{{{I_1}}}{2} = 2\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt
\\
\Rightarrow {I_1} = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt \\
I = {I_1} + {I_2} \\
\Rightarrow I = 4\int_0^{\dfrac{\pi }{2}} {\log \left( {\dfrac{1}{2}} \right)} dt + \int_0^\pi
{\log 2dx} \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ t \right]_0^{\dfrac{\pi }{2}} + \log
2\left[ x \right]_0^\pi \\
\Rightarrow I = 4\log \left( {\dfrac{1}{2}} \right)\left[ {\dfrac{\pi }{2}} \right] + \log 2\left[
\pi \right] \\
\Rightarrow I = 2\pi \log \left( {\dfrac{1}{2}} \right) + \pi \log 2 \\
\]
Now, as we know \[\log \left( {\dfrac{1}{2}} \right) = - \log 2\]
\[ \Rightarrow I = - 2\pi \log 2 + \pi \log 2{\text{ }} \Rightarrow I = - \pi \log 2\]
So, this is the required value of the integral.
Note: - In such types of questions the key concept we have to remember is that always
remember all the properties of definite integral which is stated above, then using this
properties simplify the integral and use some base logarithmic and trigonometry properties
which is also stated above, then simplify we will get the required answer.
Recently Updated Pages
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
The ratio of Delta Tf for K4left Feleft CN right6 right class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE