Answer
Verified
499.2k+ views
Hint: Convert fractional part function to greatest integer function and solve by substituting \[x\] as \[\left( 0+h \right)\] or \[\left( 0-h \right)\].
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Consider the given expression,
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Here $\left\{ x \right\}$ denotes the fractional part of x.
We know fractional part will always be non-negative and fractional part is greater than or equal to $'0'$ and less than $'1'$ .
Here in the given equation, we can apply the formula,
$\underset{x\to 0}{\mathop{\lim }}\,{{(1+x)}^{\dfrac{1}{x}}}=\underset{x\to 0}{\mathop{\lim }}\,\text{ e}$
Now, simplifying the given expression, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{e}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}$
Cancelling the like terms, we get
$\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,{{\left( 1 \right)}^{\dfrac{1}{\left\{ x \right\}}}}...........(i)$
We know the expansion,
${{a}^{x}}=1+\dfrac{x\ln a}{1!}+\dfrac{{{x}^{2}}{{\ln }^{2}}a}{2!}+.....$
Applying this in equation (i), we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{\left\{ x \right\}\ln (1)}{1!}+\dfrac{{{\left\{ x \right\}}^{2}}{{\ln }^{2}}(1)}{2!}+..... \right)\]
But we know, $\ln 1=0$ , so above equation becomes,
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=\underset{x\to 0}{\mathop{\lim }}\,\left( 1+\dfrac{0}{1!}+\dfrac{0}{2!}+..... \right)\]
As we can see that the limit is free from $'x'$ term. So the limit of the function will be constant term at any point. So we get
\[\underset{x\to 0}{\mathop{\lim }}\,{{\left( \dfrac{{{(1+\left[ x \right])}^{\dfrac{1}{\left\{ x \right\}}}}}{e} \right)}^{\dfrac{1}{\left\{ x \right\}}}}=1\]
Note: Students usually don’t learn expansions and are struck while solving the questions.
See the fractional part the student think it is very difficult.
They start applying,
\[x=[x]+\{x\}\]
\[\therefore \{x\}=x-[x]\]
And substitute this in the given expression, leading to more confusion and ending up in wrong answer.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE