Answer
Verified
488.1k+ views
Hint: Let’s substitute the values of a, b and c in the formula given below for determining the square of sum of three numbers and reach the answer by simplifying.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
$ \Rightarrow {\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right)$
Complete step-by-step answer:
All the above parts of the question contain the form of ${\left( {a + b + c} \right)^2}$ , and as we know that:
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ac} \right),$ we will use this formula for expanding every expression:
$(i)$ If we compare ${\left( {x + 2y + 4z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = x,b = 2y$ and $c = 4z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + {\left( {2y} \right)^2} + {\left( {4z} \right)^2} + 2\left( {x.2y + 2y.4z + x.4z} \right), \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = {x^2} + 4{y^2} + 16{z^2} + 4xy + 16yz + 8xz \\
$
$(ii)$ If we compare ${\left( {2x - y + z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = 2x,b = - y$ and $c = z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( {2x - y + z} \right)^2} = {\left( {2x} \right)^2} + {\left( { - y} \right)^2} + {z^2} + 2\left[ {2x.\left( { - y} \right) + \left( { - y} \right).z + 2x.z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + {y^2} + {z^2} - 4xy - 2yz + 4xz \\
$
$(iii)$ If we compare ${\left( { - 2x + 3y + 2z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 3y$ and $c = 2z$. Thus, using the formula, we’ll get:
$
\Rightarrow {\left( { - 2x + 3y + 2z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {3y} \right)^2} + {\left( {2z} \right)^2} + 2\left[ {\left( { - 2x} \right).3y + 3y.2z + \left( { - 2x} \right).2z} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 9{y^2} + 4{z^2} - 12xy + 12yz - 8xz \\
$
$(iv)$ If we compare ${\left( {3a - 7b - c} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = {\left( {3a} \right)^2} + {\left( { - 7b} \right)^2} + {\left( { - c} \right)^2} + 2\left[ {3a.\left( { - 7b} \right) + \left( { - 7b} \right).\left( { - c} \right) + 3a.\left( { - c} \right)} \right],\]
\[ \Rightarrow {\left( {3a - 7b - c} \right)^2} = 9{a^2} + 49{b^2} + {c^2} - 42ab + 14bc - 6ac\]
$(v)$ If we compare ${\left( { - 2x + 5y - 3z} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, we will get $a = - 2x,b = 5y$ and $c = - 3z$. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( { - 2x + 5y - 3z} \right)^2} = {\left( { - 2x} \right)^2} + {\left( {5y} \right)^2} + {\left( { - 3z} \right)^2} + 2\left[ {\left( { - 2x} \right).5y + 5y.\left( { - 3z} \right) + \left( { - 2x} \right).\left( { - 3z} \right)} \right], \\
\Rightarrow {\left( {x + 2y + 4z} \right)^2} = 4{x^2} + 25{y^2} + 9{z^2} - 20xy - 30yz + 12xz \\
\]
$(vi)$ If we compare ${\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2}$ with ${\left( {a + b + c} \right)^2}$, in place of a, b and c here we have $\dfrac{1}{4}a, - \dfrac{1}{2}b$ and 1 respectively. Thus, using the formula, we’ll get:
\[
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = {\left( {\dfrac{1}{4}a} \right)^2} + {\left( { - \dfrac{1}{2}b} \right)^2} + {1^2} + 2\left[ {\left( {\dfrac{1}{4}a} \right).\left( { - \dfrac{1}{2}b} \right) + \left( { - \dfrac{1}{2}b} \right).\left( 1 \right) + \left( {\dfrac{1}{4}a} \right).\left( 1 \right)} \right], \\
\Rightarrow {\left( {\dfrac{1}{4}a - \dfrac{1}{2}b + 1} \right)^2} = \dfrac{1}{{16}}{a^2} + \dfrac{1}{4}{b^2} + 1 - \dfrac{1}{4}ab - b + \dfrac{1}{2}a. \\
\]
Note: If we miss the formula for ${\left( {a + b + c} \right)^2}$, we can apply general multiplication method for expanding the above expressions:
$
\Rightarrow {\left( {a + b + c} \right)^2} = \left( {a + b + c} \right).\left( {a + b + c} \right), \\
\Rightarrow {\left( {a + b + c} \right)^2} = a\left( {a + b + c} \right) + b\left( {a + b + c} \right) + c\left( {a + b + c} \right) \\
$
On expansion, we’ll get the same result.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE