Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

Expand each of the following, using suitable identities:
(i)(x+2y+4z)2 (ii)(2xy+z)2 (iii)(2x+3y+2z)2 (iv)(3a7bc)2 (v)(2x+5y3z)2 (iv)(14a12b+1)2

Answer
VerifiedVerified
527.1k+ views
like imagedislike image
Hint: Let’s substitute the values of a, b and c in the formula given below for determining the square of sum of three numbers and reach the answer by simplifying.
(a+b+c)2=a2+b2+c2+2(ab+bc+ac)

Complete step-by-step answer:
All the above parts of the question contain the form of (a+b+c)2 , and as we know that:
(a+b+c)2=a2+b2+c2+2(ab+bc+ac), we will use this formula for expanding every expression:
(i) If we compare (x+2y+4z)2 with (a+b+c)2, we will get a=x,b=2y and c=4z. Thus, using the formula, we’ll get:
(x+2y+4z)2=x2+(2y)2+(4z)2+2(x.2y+2y.4z+x.4z),(x+2y+4z)2=x2+4y2+16z2+4xy+16yz+8xz
(ii) If we compare (2xy+z)2 with (a+b+c)2, we will get a=2x,b=y and c=z. Thus, using the formula, we’ll get:
(2xy+z)2=(2x)2+(y)2+z2+2[2x.(y)+(y).z+2x.z],(x+2y+4z)2=4x2+y2+z24xy2yz+4xz
(iii) If we compare (2x+3y+2z)2 with (a+b+c)2, we will get a=2x,b=3y and c=2z. Thus, using the formula, we’ll get:
(2x+3y+2z)2=(2x)2+(3y)2+(2z)2+2[(2x).3y+3y.2z+(2x).2z],(x+2y+4z)2=4x2+9y2+4z212xy+12yz8xz
(iv) If we compare (3a7bc)2 with (a+b+c)2, in place of a, b and c here we have 3a, -7b and –c respectively. Thus, using the formula, we’ll get:
(3a7bc)2=(3a)2+(7b)2+(c)2+2[3a.(7b)+(7b).(c)+3a.(c)],
(3a7bc)2=9a2+49b2+c242ab+14bc6ac
(v) If we compare (2x+5y3z)2 with (a+b+c)2, we will get a=2x,b=5y and c=3z. Thus, using the formula, we’ll get:
(2x+5y3z)2=(2x)2+(5y)2+(3z)2+2[(2x).5y+5y.(3z)+(2x).(3z)],(x+2y+4z)2=4x2+25y2+9z220xy30yz+12xz
(vi) If we compare (14a12b+1)2 with (a+b+c)2, in place of a, b and c here we have 14a,12b and 1 respectively. Thus, using the formula, we’ll get:
(14a12b+1)2=(14a)2+(12b)2+12+2[(14a).(12b)+(12b).(1)+(14a).(1)],(14a12b+1)2=116a2+14b2+114abb+12a.
Note: If we miss the formula for (a+b+c)2, we can apply general multiplication method for expanding the above expressions:
(a+b+c)2=(a+b+c).(a+b+c),(a+b+c)2=a(a+b+c)+b(a+b+c)+c(a+b+c)
On expansion, we’ll get the same result.