Answer
Verified
429.3k+ views
Hint: Here, we will use the concept of the factorization. Factorization is the process in which a number is written in the forms of its small factors which on multiplication give the original number. First, we will split the middle term of the equation and then we will form the factors by taking the common terms from the expression.
Complete step by step solution:
The given expression is \[{x^2} + 10x + 24\].
The given expression is a quadratic expression, so we will use a middle term splitting method.
First, we will split the middle term into two parts such that its product will be equal to the product of the first term and the third term of the expression. Therefore, we get
\[ \Rightarrow {x^2} + 10x + 24 = {x^2} + 6x + 4x + 24\]
Now taking \[x\] common from the first two terms and taking 4 common from the last two terms, the equation becomes
\[ \Rightarrow {x^2} + 10x + 24 = x\left( {x + 6} \right) + 4\left( {x + 6} \right)\]
Now we will take \[\left( {x + 6} \right)\] common from the equation. Therefore, we get
\[ \Rightarrow {x^2} + 10x + 24 = \left( {x + 6} \right)\left( {x + 4} \right)\]
Hence after factorization of the given equation we get the factors as \[\left( {x + 6} \right)\] and \[\left( {x + 4} \right)\].
Note:
Here we will split the middle term according to the basic condition. The basic condition is that the middle term i.e. term with the single power of the variable should be divided in such a way that its product must be equal to the product of the first and the last term of the equation. Factors are the smallest part of the number or equation which on multiplication will give us the actual number of equations. Generally in these types of questions algebraic identities can be used to solve and make the factors.
Complete step by step solution:
The given expression is \[{x^2} + 10x + 24\].
The given expression is a quadratic expression, so we will use a middle term splitting method.
First, we will split the middle term into two parts such that its product will be equal to the product of the first term and the third term of the expression. Therefore, we get
\[ \Rightarrow {x^2} + 10x + 24 = {x^2} + 6x + 4x + 24\]
Now taking \[x\] common from the first two terms and taking 4 common from the last two terms, the equation becomes
\[ \Rightarrow {x^2} + 10x + 24 = x\left( {x + 6} \right) + 4\left( {x + 6} \right)\]
Now we will take \[\left( {x + 6} \right)\] common from the equation. Therefore, we get
\[ \Rightarrow {x^2} + 10x + 24 = \left( {x + 6} \right)\left( {x + 4} \right)\]
Hence after factorization of the given equation we get the factors as \[\left( {x + 6} \right)\] and \[\left( {x + 4} \right)\].
Note:
Here we will split the middle term according to the basic condition. The basic condition is that the middle term i.e. term with the single power of the variable should be divided in such a way that its product must be equal to the product of the first and the last term of the equation. Factors are the smallest part of the number or equation which on multiplication will give us the actual number of equations. Generally in these types of questions algebraic identities can be used to solve and make the factors.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers