![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Figure shows a man standing stationary with respect to a horizontal conveyor belt that is accelerating with $1\,m{s^{ - 2}}$. What is the net force on the man? If the coefficient of static friction between the man’s shoes and the belt is $0.2$, up to what acceleration of the belt can the man continue to be stationary relative to the belt? (Mass of the man $ = 65kg$ )
![](https://www.vedantu.com/question-sets/908cd167-8d39-4910-8b34-7ebef8a8fb516540698784920463015.png)
Answer
125.4k+ views
Hint: For the man to be at rest with respect to the conveyor belt his acceleration must be equal to the acceleration of the conveyor belt. The net force on the man will be given using Newton’s second law of motion; his mass multiplied by his acceleration. The maximum acceleration for which the man will be stationary relative to the belt can be calculated using the maximum static friction force acting on the man.
Complete step by step solution:
The man is given to be stationary with respect to the horizontal conveyor belt. For the man to be stationary the acceleration of the man must be equal to the acceleration of the conveyor belt.
The acceleration of the conveyor belt, ${a_c} = 1\,m{s^{ - 2}}$
Therefore, the acceleration of the man ${a_m}$ will be, \[{a_m} = {a_c} = 1\,m{s^{ - 2}}\]
This will be the acceleration of the man for which he will be stationary relative to the conveyor belt.
The net force on the man, using Newton’s second law will be: \[m{a_m}\] here, \[m\] is the mass of the man.
The mass of the man is given as, \[m = 65kg\]
Therefore, the net force on the man will be:
\[m{a_m} = 65 \times 1\]
\[ \Rightarrow m{a_m} = 65N\]
The net force on the man is \[65N\] . The man is at rest relative to the conveyor belt due to the frictional force acting between the man’s shoes and the belt.
The maximum value of frictional force \[f\] is given as:
\[f = \mu {\rm N}\]
Here, \[\mu \] is the coefficient of friction, it is given that \[\mu = 0.2\]
![](https://www.vedantu.com/question-sets/74ca5dc6-d024-462a-abef-5e59a90d579d1109591597291144624.png)
The normal force acting on the man is the reaction force between the man and the belt. This reaction force is balanced by the weight of the man which is given as:
\[{\rm N} = mg\]
Here, \[{\rm N}\] is the normal force and \[g\] is the acceleration due to gravity.
Substituting this value in \[f = \mu {\rm N}\] , we get
\[{f_{\max }} = m{a_{\max }} = \mu mg\]
Here, \[{f_{\max }}\] denotes maximum frictional force and \[{a_{\max }}\] denotes the maximum acceleration.
\[ \Rightarrow {a_{\max }} = \mu g\]
\[ \Rightarrow {a_{\max }} = 0.2 \times 10\] taking $g = 10m{s^{ - 2}}$
$ \Rightarrow a = 2m{s^{ - 2}}$
This is the maximum acceleration for which the man continues to be stationary relative to the belt.
Note: The man is relatively stationary due to the frictional force between the man’s shoes and the belt. This is similar to a person running on a cardio machine. The value of frictional force is limited and its maximum value is given as \[f = \mu {\rm N}\] . If the man moves with acceleration more than $2m{s^{ - 2}}$ , he will not be stationary and move in the forward direction.
Complete step by step solution:
The man is given to be stationary with respect to the horizontal conveyor belt. For the man to be stationary the acceleration of the man must be equal to the acceleration of the conveyor belt.
The acceleration of the conveyor belt, ${a_c} = 1\,m{s^{ - 2}}$
Therefore, the acceleration of the man ${a_m}$ will be, \[{a_m} = {a_c} = 1\,m{s^{ - 2}}\]
This will be the acceleration of the man for which he will be stationary relative to the conveyor belt.
The net force on the man, using Newton’s second law will be: \[m{a_m}\] here, \[m\] is the mass of the man.
The mass of the man is given as, \[m = 65kg\]
Therefore, the net force on the man will be:
\[m{a_m} = 65 \times 1\]
\[ \Rightarrow m{a_m} = 65N\]
The net force on the man is \[65N\] . The man is at rest relative to the conveyor belt due to the frictional force acting between the man’s shoes and the belt.
The maximum value of frictional force \[f\] is given as:
\[f = \mu {\rm N}\]
Here, \[\mu \] is the coefficient of friction, it is given that \[\mu = 0.2\]
![](https://www.vedantu.com/question-sets/74ca5dc6-d024-462a-abef-5e59a90d579d1109591597291144624.png)
The normal force acting on the man is the reaction force between the man and the belt. This reaction force is balanced by the weight of the man which is given as:
\[{\rm N} = mg\]
Here, \[{\rm N}\] is the normal force and \[g\] is the acceleration due to gravity.
Substituting this value in \[f = \mu {\rm N}\] , we get
\[{f_{\max }} = m{a_{\max }} = \mu mg\]
Here, \[{f_{\max }}\] denotes maximum frictional force and \[{a_{\max }}\] denotes the maximum acceleration.
\[ \Rightarrow {a_{\max }} = \mu g\]
\[ \Rightarrow {a_{\max }} = 0.2 \times 10\] taking $g = 10m{s^{ - 2}}$
$ \Rightarrow a = 2m{s^{ - 2}}$
This is the maximum acceleration for which the man continues to be stationary relative to the belt.
Note: The man is relatively stationary due to the frictional force between the man’s shoes and the belt. This is similar to a person running on a cardio machine. The value of frictional force is limited and its maximum value is given as \[f = \mu {\rm N}\] . If the man moves with acceleration more than $2m{s^{ - 2}}$ , he will not be stationary and move in the forward direction.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the difference between Conduction and conv class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Mark the correct statements about the friction between class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
A standing wave is formed by the superposition of two class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Derive an expression for work done by the gas in an class 11 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement
![arrow-right](/cdn/images/seo-templates/arrow-right.png)