Figure shows a semicircle that is the graph of the equation $y=\sqrt{6x-{{x}^{2}}}$. If the semicircle is rotated ${{360}^{\circ }}$ about the $x-$axis, calculate the volume of the sphere that is created. \[\]
A.$6\pi $ \[\]
B. $12\pi $ \[\]
C. $18\pi $ \[\]
D. $24\pi $ \[\]
E.$36\pi $ \[\]
Answer
Verified
460.2k+ views
Hint: We denote the other point of intersection except origin as A. We find the coordinate of A by finding the solutions of $y=\sqrt{6x-{{x}^{2}}}=0$. We find OA as the diameter of the rotating sphere and find the volume of sphere $V=\dfrac{4}{3}\pi {{r}^{3}}$ where $r$ is the radius of the sphere.
Complete step-by-step solution:
We see in the figure that a semicircle is present whose one end is at the origin is defined by the equation
\[y=\sqrt{6x-{{x}^{2}}}........\left( 1 \right)\]
We denote the other end of the semicircle lying on the positive $x-$axis as A.
Since the equation of $x-$axis is $y=0$ . So we can find the coordinates of A since the semicircle A lies on the $x-$axis when $y=\sqrt{6x-{{x}^{2}}}=0$. So we have;
\[\sqrt{6x-{{x}^{2}}}=0\]
We square both sides of above equation to have;
\[\Rightarrow 6x-{{x}^{2}}=0\]
We factorize by taking $x$ common in the above step and have;
\[\Rightarrow x\left( 6-x \right)=0\]
Since the product of the two factors is zero one of them must be zero. So we have;
\[\begin{align}
& \Rightarrow x=0\text{ or }6-x=0 \\
& \Rightarrow x=0\text{ or }x=6 \\
\end{align}\]
So we have two roots of the equation $x=0,6$. So when $x=0,y=0$ we have the coordinate of the origin $O\left( 0,0 \right)$ and when $x=6,y=0$ we have a coordinate of $A\left( 6,0 \right)$. So the diameter of the circle is $OA=6$ units. \[\]
We are given the question that the semicircle is rotated ${{360}^{\circ }}$ about the $x-$axis and creates a sphere. So the diameter of the sphere is $OA=6$ units. So the radius $r$ of the sphere is $r=\dfrac{OA}{2}=\dfrac{6}{2}=3$ units. Then volume $V$ of the sphere in cubic units is
\[V=\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{4}{3}\pi {{\left( 3 \right)}^{3}}=\dfrac{4}{3}\pi \left( 27 \right)=4\times 9\pi =36\pi \]
So the correct option is E.
Note: We note that the question presumes that the semicircle is not displaced from the original end points O and A when it's rotated about the $x-$axis. We can alternatively find the radius by squaring the given equation $y=\sqrt{6x-{{x}^{2}}}$ and then comparing it with general equation of circle ${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$ where $r$the radius is and $\left( a,b \right)$ is the centre of the circle. The other semi-circle fourth quadrant will have the equation$y=-\sqrt{6x-{{x}^{2}}}$.
Complete step-by-step solution:
We see in the figure that a semicircle is present whose one end is at the origin is defined by the equation
\[y=\sqrt{6x-{{x}^{2}}}........\left( 1 \right)\]
We denote the other end of the semicircle lying on the positive $x-$axis as A.
Since the equation of $x-$axis is $y=0$ . So we can find the coordinates of A since the semicircle A lies on the $x-$axis when $y=\sqrt{6x-{{x}^{2}}}=0$. So we have;
\[\sqrt{6x-{{x}^{2}}}=0\]
We square both sides of above equation to have;
\[\Rightarrow 6x-{{x}^{2}}=0\]
We factorize by taking $x$ common in the above step and have;
\[\Rightarrow x\left( 6-x \right)=0\]
Since the product of the two factors is zero one of them must be zero. So we have;
\[\begin{align}
& \Rightarrow x=0\text{ or }6-x=0 \\
& \Rightarrow x=0\text{ or }x=6 \\
\end{align}\]
So we have two roots of the equation $x=0,6$. So when $x=0,y=0$ we have the coordinate of the origin $O\left( 0,0 \right)$ and when $x=6,y=0$ we have a coordinate of $A\left( 6,0 \right)$. So the diameter of the circle is $OA=6$ units. \[\]
We are given the question that the semicircle is rotated ${{360}^{\circ }}$ about the $x-$axis and creates a sphere. So the diameter of the sphere is $OA=6$ units. So the radius $r$ of the sphere is $r=\dfrac{OA}{2}=\dfrac{6}{2}=3$ units. Then volume $V$ of the sphere in cubic units is
\[V=\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{4}{3}\pi {{\left( 3 \right)}^{3}}=\dfrac{4}{3}\pi \left( 27 \right)=4\times 9\pi =36\pi \]
So the correct option is E.
Note: We note that the question presumes that the semicircle is not displaced from the original end points O and A when it's rotated about the $x-$axis. We can alternatively find the radius by squaring the given equation $y=\sqrt{6x-{{x}^{2}}}$ and then comparing it with general equation of circle ${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{r}^{2}}$ where $r$the radius is and $\left( a,b \right)$ is the centre of the circle. The other semi-circle fourth quadrant will have the equation$y=-\sqrt{6x-{{x}^{2}}}$.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE