
$
{\text{Find }}{A^2}{\text{ if }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]
$
Answer
627.3k+ views
\[
\Rightarrow {\text{Let }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]{\text{ (1)}} \\
{\text{So, now we have to find the value of }}{A^2}.{\text{ So,}} \\
\Rightarrow {A^2} = A*A{\text{ (2)}} \\
{\text{Putting value of }}A{\text{ in the RHS}}{\text{ of equation 2 we get,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]*\left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right] \\
{\text{As, we know that for a matrix }}X{\text{ if we have to find }}{X^2}{\text{ then we find it as given below}} \\
\Rightarrow {\text{Let }}X = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]{\text{ }} \\
{\text{So, }}{X^2} = X*X,{\text{ is calculated as,}} \\
\Rightarrow {X^2} = \left[ {\begin{array}{*{20}{c}}
{(a*a) + (b*d) + (c*g)}&{(a*b) + (b*e) + (c*h)}&{(a*c) + (b*f) + (c*i)} \\
{(d*a) + (e*d) + (f*g)}&{(d*b) + (e*e) + (f*h)}&{(d*c) + (e*f) + (f*i)} \\
{(g*a) + (h*d) + (i*g)}&{(g*b) + (h*e) + (i*h)}&{(g*c) + (h*f) + (i*i)}
\end{array}} \right] \\
{\text{So, like }}{X^2}{\text{ we can also find the value of }}{A^2}. \\
{\text{So, for calculating the value of }}{A^2}. \\
\Rightarrow {{\text{A}}^2} = \left[ {\begin{array}{*{20}{c}}
{(1*1) + (2*3) + (5*1)}&{(1*2) + (2*4) + (5*( - 1))}&{(1*5) + (2*1) + (5*2)} \\
{(3*1) + (4*3) + (1*1)}&{(3*2) + (4*4) + (1*( - 1))}&{(3*5) + (4*1) + (1*2)} \\
{(1*1) + ( - 1*3) + (2*1)}&{(1*2) + ( - 1*4) + (2*( - 1))}&{(1*5) + (( - 1)*1) + (2*2)}
\end{array}} \right]{\text{ So,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 5}&{2 + 8 - 5}&{5 + 2 + 10} \\
{3 + 12 + 1}&{6 + 16 - 1}&{15 + 4 + 2} \\
{1 - 3 + 2}&{2 - 4 - 2}&{5 - 1 + 4}
\end{array}} \right]{\text{ So on solving this it becomes}} \\
{\text{Hence , }}{A^2} = \left[ {\begin{array}{*{20}{c}}
{12}&5&{17} \\
{16}&{21}&{21} \\
0&{ - 4}&8
\end{array}} \right] \\
{\text{NOTE: - Whenever you came up with this type of problem then make calculations proper}} \\
{\text{As, in this type of problem there are many chances of getting calculation mistakes}}{\text{.}} \\
\\
\]
\Rightarrow {\text{Let }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]{\text{ (1)}} \\
{\text{So, now we have to find the value of }}{A^2}.{\text{ So,}} \\
\Rightarrow {A^2} = A*A{\text{ (2)}} \\
{\text{Putting value of }}A{\text{ in the RHS}}{\text{ of equation 2 we get,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]*\left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right] \\
{\text{As, we know that for a matrix }}X{\text{ if we have to find }}{X^2}{\text{ then we find it as given below}} \\
\Rightarrow {\text{Let }}X = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]{\text{ }} \\
{\text{So, }}{X^2} = X*X,{\text{ is calculated as,}} \\
\Rightarrow {X^2} = \left[ {\begin{array}{*{20}{c}}
{(a*a) + (b*d) + (c*g)}&{(a*b) + (b*e) + (c*h)}&{(a*c) + (b*f) + (c*i)} \\
{(d*a) + (e*d) + (f*g)}&{(d*b) + (e*e) + (f*h)}&{(d*c) + (e*f) + (f*i)} \\
{(g*a) + (h*d) + (i*g)}&{(g*b) + (h*e) + (i*h)}&{(g*c) + (h*f) + (i*i)}
\end{array}} \right] \\
{\text{So, like }}{X^2}{\text{ we can also find the value of }}{A^2}. \\
{\text{So, for calculating the value of }}{A^2}. \\
\Rightarrow {{\text{A}}^2} = \left[ {\begin{array}{*{20}{c}}
{(1*1) + (2*3) + (5*1)}&{(1*2) + (2*4) + (5*( - 1))}&{(1*5) + (2*1) + (5*2)} \\
{(3*1) + (4*3) + (1*1)}&{(3*2) + (4*4) + (1*( - 1))}&{(3*5) + (4*1) + (1*2)} \\
{(1*1) + ( - 1*3) + (2*1)}&{(1*2) + ( - 1*4) + (2*( - 1))}&{(1*5) + (( - 1)*1) + (2*2)}
\end{array}} \right]{\text{ So,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 5}&{2 + 8 - 5}&{5 + 2 + 10} \\
{3 + 12 + 1}&{6 + 16 - 1}&{15 + 4 + 2} \\
{1 - 3 + 2}&{2 - 4 - 2}&{5 - 1 + 4}
\end{array}} \right]{\text{ So on solving this it becomes}} \\
{\text{Hence , }}{A^2} = \left[ {\begin{array}{*{20}{c}}
{12}&5&{17} \\
{16}&{21}&{21} \\
0&{ - 4}&8
\end{array}} \right] \\
{\text{NOTE: - Whenever you came up with this type of problem then make calculations proper}} \\
{\text{As, in this type of problem there are many chances of getting calculation mistakes}}{\text{.}} \\
\\
\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

