Answer
Verified
393.9k+ views
Hint: In this type of question we have to use the concept of derivatives. Here, we have given two functions \[u\] and \[v\], where both are functions of \[\theta \]. So, first we differentiate both the functions with respect to \[\theta \] and then we find the value of \[\dfrac{du}{dv}\] by using, \[\dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta } \right)}{\left( \dfrac{dv}{d\theta } \right)}\]. Also we have to substitute \[\theta =\dfrac{\pi }{4}\] to obtain the final result.
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE