How to find \[\dfrac{{dy}}{{dx}}\] if \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Answer
Verified
442.8k+ views
Hint:
Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.
Formula Used:
We will use the following formulas:
1) Derivative formula: \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\]
2) Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We are given with a function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Now, we will find the derivative of the given function.
Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.
Using the derivative formula \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)\]
Now, by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by taking out the common factor, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Taking LCM of the terms inside the bracket on the RHS, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by rewriting the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}\]
Cancelling out the same terms of the fractions, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\]
Therefore, the derivative \[\dfrac{{dy}}{{dx}}\] of the function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\] is \[\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\].
Note:
We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the terms\[x\] and\[y\]. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.
Here, we have to find the derivative of the given function. We will use the derivative formula to find the derivative of the logarithmic function. Then we will find the derivative of the algebraic function by using the concept of Implicit differentiation. We will simplify the equation further to get the required answer.
Formula Used:
We will use the following formulas:
1) Derivative formula: \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\]
2) Derivative formula: \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]
Complete step by step solution:
We are given with a function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\]
Now, we will find the derivative of the given function.
Now, we will find the derivative of the logarithmic function followed by the derivative of the algebraic function simultaneously.
Using the derivative formula \[\dfrac{d}{{dx}}\left( {\ln x} \right) = \dfrac{1}{x}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\left[ {\dfrac{d}{{dx}}\left( {8{x^2} + 9{y^2}} \right)} \right]\]
Simplifying the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {8{x^2}} \right) + \dfrac{1}{{8{x^2} + 9{y^2}}}\dfrac{d}{{dx}}\left( {9{y^2}} \right)\]
Now, by using the derivative formula \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\], we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{8 \cdot 2x}}{{8{x^2} + 9{y^2}}} + \dfrac{{9 \cdot 2y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Multiplying the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}} + \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}}\]
Rewriting the equation, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}\dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by taking out the common factor, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Taking LCM of the terms inside the bracket on the RHS, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {1 \times \dfrac{{8{x^2} + 9{y^2}}}{{8{x^2} + 9{y^2}}} - \dfrac{{18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}}\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right) = \dfrac{{16x}}{{8{x^2} + 9{y^2}}}\]
Now, by rewriting the terms, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{16x}}{{8{x^2} + 9{y^2}}}}}{{\left( {\dfrac{{8{x^2} + 9{y^2} - 18y}}{{8{x^2} + 9{y^2}}}} \right)}}\]
Cancelling out the same terms of the fractions, we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\]
Therefore, the derivative \[\dfrac{{dy}}{{dx}}\] of the function \[y = \ln \left( {8{x^2} + 9{y^2}} \right)\] is \[\dfrac{{16x}}{{8{x^2} + 9{y^2} - 18y}}\].
Note:
We know that Differentiation is a method of finding the derivative of a function and finding the rate of change of function with respect to one variable. But here, we are using the concept of Implicit differentiation. Implicit Differentiation is a process of finding the derivative of a function when the function has both the terms\[x\] and\[y\]. Implicit Differentiation is similar to the process of differentiation and uses the same formula used for differentiation.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE