
Find five rational numbers between -1 and 1.
Answer
615.3k+ views
Hint: The given question is related to rational numbers and their representation on the number line. Using the definition of a rational number and equivalent fraction of -1 and 1, find the rational numbers between -1 and 1.
Complete step-by-step answer:
Before moving to the options, let us talk about the definitions of rational numbers followed by irrational numbers. Rational numbers are those real numbers that can be written in the form of $\dfrac{p}{q}$ such that both p and q are integers and $q \ne 0$ . In other words, we can say that the numbers which are either terminating or recurring when converted to decimal form are called rational numbers. All the integers fall under this category.
Now, moving to irrational numbers. Those real numbers which are non-terminating and non-recurring are termed as irrational numbers. The roots of the numbers which are not perfect squares fall under the category of irrational numbers. $\pi \text{ and }e$ are also the standard examples of irrational numbers.
Now, coming to the question, we have to find five rational numbers between -1 and 1. We know, we can write -1 as $\dfrac{-1}{1}$ and 1 as $\dfrac{1}{1}$ .
Now, we will multiply 5 in the numerator and denominator of both the fractions. So, we can write -1 as $\dfrac{-1\times 5}{1\times 5}=\dfrac{-5}{5}$ . Also, we can write 1 as $\dfrac{1\times 5}{1\times 5}=\dfrac{5}{5}$ . Now, we can easily find five rational numbers between $\dfrac{-5}{5}$ and $\dfrac{5}{5}$ . The five rational numbers between $\dfrac{-5}{5}$ and $\dfrac{5}{5}$ are $\dfrac{-3}{5},\dfrac{-1}{5},\dfrac{1}{5},\dfrac{3}{5}$ and $\dfrac{4}{5}$ .
Note: By using the above stated method, we can find infinite numbers of rational numbers between any two rational numbers. Instead of multiplying by 5, we can multiply by any other number as per the number of rational numbers required between the two numbers.
Complete step-by-step answer:
Before moving to the options, let us talk about the definitions of rational numbers followed by irrational numbers. Rational numbers are those real numbers that can be written in the form of $\dfrac{p}{q}$ such that both p and q are integers and $q \ne 0$ . In other words, we can say that the numbers which are either terminating or recurring when converted to decimal form are called rational numbers. All the integers fall under this category.
Now, moving to irrational numbers. Those real numbers which are non-terminating and non-recurring are termed as irrational numbers. The roots of the numbers which are not perfect squares fall under the category of irrational numbers. $\pi \text{ and }e$ are also the standard examples of irrational numbers.
Now, coming to the question, we have to find five rational numbers between -1 and 1. We know, we can write -1 as $\dfrac{-1}{1}$ and 1 as $\dfrac{1}{1}$ .
Now, we will multiply 5 in the numerator and denominator of both the fractions. So, we can write -1 as $\dfrac{-1\times 5}{1\times 5}=\dfrac{-5}{5}$ . Also, we can write 1 as $\dfrac{1\times 5}{1\times 5}=\dfrac{5}{5}$ . Now, we can easily find five rational numbers between $\dfrac{-5}{5}$ and $\dfrac{5}{5}$ . The five rational numbers between $\dfrac{-5}{5}$ and $\dfrac{5}{5}$ are $\dfrac{-3}{5},\dfrac{-1}{5},\dfrac{1}{5},\dfrac{3}{5}$ and $\dfrac{4}{5}$ .
Note: By using the above stated method, we can find infinite numbers of rational numbers between any two rational numbers. Instead of multiplying by 5, we can multiply by any other number as per the number of rational numbers required between the two numbers.
Recently Updated Pages
Master Class 7 English: Engaging Questions & Answers for Success

Master Class 7 Maths: Engaging Questions & Answers for Success

Master Class 7 Science: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE


