Answer
Verified
484.5k+ views
Hint- Proceed the solution of this question by dividing the quadrilateral in two triangles (using either of the diagonals), calculate the (positive value of) the areas of each triangle, and add these values to get the total area of the quadrilateral.
Complete step-by-step answer:
Let the vertices of the quadrilateral be A (-3, -1), B (-2, -4), C (4, -1) and D (3, 4).
Let AC be the diagonal of quadrilateral ABCD.
In the following figure, quadrilateral ABCD has been divided into ΔABC and ΔADC
Therefore,
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC ………… (1)
We know that,
Area of triangle = \[\dfrac{1}{2}\left| {[{{\text{x}}_1}({{\text{y}}_2} - {{\text{y}}_3}) + {{\text{x}}_2}({{\text{y}}_3} - {{\text{y}}_1}) + {{\text{x}}_3}({{\text{y}}_1} - {{\text{y}}_2})]} \right|\]
Thus,
Let triangle be ABC, where A= (−3, −1), B= (−2, −4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,B $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = - 2,{{\text{y}}_2} = - 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ABC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) - ( - 1)} \right) + ( - 2) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - ( - 4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) + 1} \right) + ( - 2) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) + 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( { - 3} \right) + ( - 2) \times \left( {(0} \right) + (4) \times \left( 3 \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[9 + 0 + 12]} \right|\]
⇒\[\dfrac{1}{2}\left| {[21]} \right| = \dfrac{{21}}{2}\] Sq. units
Now let triangle be ADC, where A= (−3, −1), D= (3, 4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,D $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = 3,{{\text{y}}_2} = 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ADC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) - ( - 1)} \right) + (3) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - (4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) + 1} \right) + (3) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) - 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( 5 \right) + (3) \times \left( 0 \right) + (4) \times \left( { - 5} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 15 + 0 - 20]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 35]} \right| = \left| {\dfrac{{ - 35}}{2}} \right| = \dfrac{{35}}{2}\] Sq. units
Thus,
Substitute these values in equation (1), we have
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC
Area of quadrilateral ABCD = \[\dfrac{{21}}{2}{\text{ + }}\dfrac{{35}}{2} = \dfrac{{56}}{2} = 28\] Sq. units
Hence, the area of the quadrilateral is 28 square units.
Note- In this particular question, sometimes it’s difficult to remember the formula of Area of triangle
which states above so there is also one other form of Area of triangle
Formula in determinant form which is as Area of triangle = $\left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_1}}&{{{\text{y}}_1}}&1 \\
{{{\text{x}}_2}}&{{{\text{y}}_2}}&1 \\
{{{\text{x}}_3}}&{{{\text{y}}_3}}&1
\end{array}} \right|} \right|$
We can also find the area of a triangle using this formula.
Complete step-by-step answer:
Let the vertices of the quadrilateral be A (-3, -1), B (-2, -4), C (4, -1) and D (3, 4).
Let AC be the diagonal of quadrilateral ABCD.
In the following figure, quadrilateral ABCD has been divided into ΔABC and ΔADC
Therefore,
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC ………… (1)
We know that,
Area of triangle = \[\dfrac{1}{2}\left| {[{{\text{x}}_1}({{\text{y}}_2} - {{\text{y}}_3}) + {{\text{x}}_2}({{\text{y}}_3} - {{\text{y}}_1}) + {{\text{x}}_3}({{\text{y}}_1} - {{\text{y}}_2})]} \right|\]
Thus,
Let triangle be ABC, where A= (−3, −1), B= (−2, −4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,B $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = - 2,{{\text{y}}_2} = - 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ABC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) - ( - 1)} \right) + ( - 2) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - ( - 4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {( - 4) + 1} \right) + ( - 2) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) + 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( { - 3} \right) + ( - 2) \times \left( {(0} \right) + (4) \times \left( 3 \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[9 + 0 + 12]} \right|\]
⇒\[\dfrac{1}{2}\left| {[21]} \right| = \dfrac{{21}}{2}\] Sq. units
Now let triangle be ADC, where A= (−3, −1), D= (3, 4), C= (4, -1)
Let the coordinates of point A $\left( {{{\text{x}}_1},{{\text{y}}_1}} \right)$ ,D $\left( {{{\text{x}}_2},{{\text{y}}_2}} \right)$ and C $\left( {{{\text{x}}_3},{{\text{y}}_3}} \right)$
So, \[{{\text{x}}_1} = - 3,{{\text{y}}_1} = - 1,{{\text{x}}_2} = 3,{{\text{y}}_2} = 4,{{\text{x}}_3} = 4,{{\text{y}}_3} = - 1\]
So using Above formula,
Area of triangle Δ ADC=
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) - ( - 1)} \right) + (3) \times \left( {( - 1) - ( - 1)} \right) + (4) \times \left( {( - 1) - (4)} \right)]} \right|\]
On further solving
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( {(4) + 1} \right) + (3) \times \left( {( - 1) + 1} \right) + (4) \times \left( {( - 1) - 4} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[( - 3) \times \left( 5 \right) + (3) \times \left( 0 \right) + (4) \times \left( { - 5} \right)]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 15 + 0 - 20]} \right|\]
⇒\[\dfrac{1}{2}\left| {[ - 35]} \right| = \left| {\dfrac{{ - 35}}{2}} \right| = \dfrac{{35}}{2}\] Sq. units
Thus,
Substitute these values in equation (1), we have
Area of quadrilateral ABCD = Area of Δ ABC + Area of Δ ADC
Area of quadrilateral ABCD = \[\dfrac{{21}}{2}{\text{ + }}\dfrac{{35}}{2} = \dfrac{{56}}{2} = 28\] Sq. units
Hence, the area of the quadrilateral is 28 square units.
Note- In this particular question, sometimes it’s difficult to remember the formula of Area of triangle
which states above so there is also one other form of Area of triangle
Formula in determinant form which is as Area of triangle = $\left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_1}}&{{{\text{y}}_1}}&1 \\
{{{\text{x}}_2}}&{{{\text{y}}_2}}&1 \\
{{{\text{x}}_3}}&{{{\text{y}}_3}}&1
\end{array}} \right|} \right|$
We can also find the area of a triangle using this formula.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE