Answer
Verified
441.3k+ views
Hint: Here we will be using the formula of compound interest which states as below:
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\] , where
\[A = {\text{final amount}}\],
\[P = {\text{initial principal balance}}\],
\[r = {\text{rate of interest}}\],
\[n = {\text{no}}{\text{.of time interest applied }}\] and
\[t = {\text{number of time periods}}\].
Complete answer:
Step 1: As given in the question
\[P = 48000\],
\[r = \dfrac{5}{2}\% \] ,
\[t = 2{\text{ yrs}}\] and
\[n = 1\]. By substituting these values in the formula
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\]we get:
\[A = 48000{\left( {1 + \dfrac{{5/2}}{1}} \right)^{1 \times 2}}\]
By solving inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1 + 0.025} \right)^2}\]
By doing addition inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1.025} \right)^2}\]
By solving the powers and multiplying
\[1.025 \times 1.025\], on the RHS side we get:
\[ \Rightarrow A = 48000\left( {1.050625} \right)\]
After doing the final multiplication in the RHS side of the above expression, we get:
\[ \Rightarrow A = {\text{Rs}}.{\text{ }}50430\]
Step 2: Now, as we know interest equals the subtraction of principal amount from total amount i.e. \[ \Rightarrow {\text{Interest}} = A - P\].
By substituting the values of \[P = 48000\] and \[A = 50430\] in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = 50430 - 48000\]
By doing the subtraction in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = {\text{Rs}}{\text{. }}2430\]
Interest amount is \[{\text{Rs}}{\text{. }}2430\].
Note:
Students need to remember the difference between the Simple interest and compound interest formulas. Simple interest is calculated on the principal amount. Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, which is known as interest on interest. Also, students need to know that the formula which we are using is for calculating the amount, not compound interest. Compound interest is the difference between the amount and principal value.
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\] , where
\[A = {\text{final amount}}\],
\[P = {\text{initial principal balance}}\],
\[r = {\text{rate of interest}}\],
\[n = {\text{no}}{\text{.of time interest applied }}\] and
\[t = {\text{number of time periods}}\].
Complete answer:
Step 1: As given in the question
\[P = 48000\],
\[r = \dfrac{5}{2}\% \] ,
\[t = 2{\text{ yrs}}\] and
\[n = 1\]. By substituting these values in the formula
\[A = P{\left( {1 + \dfrac{r}{n}} \right)^{nt}}\]we get:
\[A = 48000{\left( {1 + \dfrac{{5/2}}{1}} \right)^{1 \times 2}}\]
By solving inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1 + 0.025} \right)^2}\]
By doing addition inside the brackets in the RHS side of the above expression, we get:
\[ \Rightarrow A = 48000{\left( {1.025} \right)^2}\]
By solving the powers and multiplying
\[1.025 \times 1.025\], on the RHS side we get:
\[ \Rightarrow A = 48000\left( {1.050625} \right)\]
After doing the final multiplication in the RHS side of the above expression, we get:
\[ \Rightarrow A = {\text{Rs}}.{\text{ }}50430\]
Step 2: Now, as we know interest equals the subtraction of principal amount from total amount i.e. \[ \Rightarrow {\text{Interest}} = A - P\].
By substituting the values of \[P = 48000\] and \[A = 50430\] in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = 50430 - 48000\]
By doing the subtraction in the RHS side of the above expression we get:
\[ \Rightarrow {\text{Interest}} = {\text{Rs}}{\text{. }}2430\]
Interest amount is \[{\text{Rs}}{\text{. }}2430\].
Note:
Students need to remember the difference between the Simple interest and compound interest formulas. Simple interest is calculated on the principal amount. Compound interest is calculated on the principal amount and also on the accumulated interest of previous periods, which is known as interest on interest. Also, students need to know that the formula which we are using is for calculating the amount, not compound interest. Compound interest is the difference between the amount and principal value.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
The quadratic equation whose one root is 2sqrt3 will class 10 maths JEE_Main
If alpha and beta are the roots of the equation x2 class 10 maths JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE