Answer
Verified
496.8k+ views
Hint: Find the equation of tangent to the circle and equate it to the equation of the line to find the point of contact. Then substitute the point in the circle equation to find the condition.
Complete step-by-step answer:
Let us find the slope of the tangent to the circle which is \[\dfrac{{dy}}{{dx}}\].
Given equation of circle is as follows:
\[{x^2} + {y^2} = {a^2}...........(1)\]
Differentiating both sides with respect to x, we get:
\[2x + 2y\dfrac{{dy}}{{dx}} = 0\]
Taking 2x to the other side and simplifying, we get:
\[2y\dfrac{{dy}}{{dx}} = - 2x\]
Now, taking 2y to the other side and finding the slope as follows:
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Let the tangent intersect the circle at the point (h, k), then we have the slope of the tangent as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - h}}{k}.........(2)\]
The equation of the line having slope m and passing through a point (a, b) is given by:
\[y - b = m(x - a)\]
Using equation (2) for the equation of tangent in the above equation, we get:
\[y - k = \dfrac{{ - h}}{k}(x - h)\]
Simplifying this expression by multiplying k on both sides, we get:
\[ky - {k^2} = - hx + {h^2}\]
Gathering constant terms on the right-hand side, we have:
\[ky + hx = {h^2} + {k^2}..........(3)\]
The point (h, k) lies on the circle, therefore, using equation (1), we have:
\[{h^2} + {k^2} = {a^2}..........(4)\]
Substituting equation (4) in equation (3), we get:
\[ky + hx = {a^2}\]
\[ky + hx - {a^2} = 0..........(5)\]
The equation of the line is given by,
\[px + qy + r = 0..........(6)\]
From equation (5) and (6), we have:
\[\dfrac{p}{h} = \dfrac{q}{k} = - \dfrac{r}{{{a^2}}}\]
Hence, the value of h and k are as follows:
\[h = - \dfrac{{{a^2}}}{r}p...........(7)\]
\[k = - \dfrac{{{a^2}}}{r}q..........(8)\]
Hence, the point of intersection is \[\left( { - \dfrac{{{a^2}}}{r}p, - \dfrac{{{a^2}}}{r}q} \right)\].
Now, substitute equation (7) and (8) in equation (4).
\[{\left( { - \dfrac{{{a^2}}}{r}p} \right)^2} + {\left( { - \dfrac{{{a^2}}}{r}q} \right)^2} = {a^2}\]
\[\dfrac{{{a^4}}}{{{r^2}}}{p^2} + \dfrac{{{a^4}}}{{{r^2}}}{q^2} = {a^2}\]
\[\dfrac{{{a^4}}}{{{r^2}}}({p^2} + {q^2}) = {a^2}\]
\[{p^2} + {q^2} = \dfrac{{{r^2}}}{{{a^2}}}\]
Hence, the required condition is \[{p^2} + {q^2} = \dfrac{{{r^2}}}{{{a^2}}}\].
Note: You can directly solve the equation without finding the slope of the tangent if you know the formula for the equation of tangent to the circle at a point (h, k), that is, \[hx + ky - {a^2} = 0\].
Complete step-by-step answer:
Let us find the slope of the tangent to the circle which is \[\dfrac{{dy}}{{dx}}\].
Given equation of circle is as follows:
\[{x^2} + {y^2} = {a^2}...........(1)\]
Differentiating both sides with respect to x, we get:
\[2x + 2y\dfrac{{dy}}{{dx}} = 0\]
Taking 2x to the other side and simplifying, we get:
\[2y\dfrac{{dy}}{{dx}} = - 2x\]
Now, taking 2y to the other side and finding the slope as follows:
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - x}}{y}\]
Let the tangent intersect the circle at the point (h, k), then we have the slope of the tangent as:
\[\dfrac{{dy}}{{dx}} = \dfrac{{ - h}}{k}.........(2)\]
The equation of the line having slope m and passing through a point (a, b) is given by:
\[y - b = m(x - a)\]
Using equation (2) for the equation of tangent in the above equation, we get:
\[y - k = \dfrac{{ - h}}{k}(x - h)\]
Simplifying this expression by multiplying k on both sides, we get:
\[ky - {k^2} = - hx + {h^2}\]
Gathering constant terms on the right-hand side, we have:
\[ky + hx = {h^2} + {k^2}..........(3)\]
The point (h, k) lies on the circle, therefore, using equation (1), we have:
\[{h^2} + {k^2} = {a^2}..........(4)\]
Substituting equation (4) in equation (3), we get:
\[ky + hx = {a^2}\]
\[ky + hx - {a^2} = 0..........(5)\]
The equation of the line is given by,
\[px + qy + r = 0..........(6)\]
From equation (5) and (6), we have:
\[\dfrac{p}{h} = \dfrac{q}{k} = - \dfrac{r}{{{a^2}}}\]
Hence, the value of h and k are as follows:
\[h = - \dfrac{{{a^2}}}{r}p...........(7)\]
\[k = - \dfrac{{{a^2}}}{r}q..........(8)\]
Hence, the point of intersection is \[\left( { - \dfrac{{{a^2}}}{r}p, - \dfrac{{{a^2}}}{r}q} \right)\].
Now, substitute equation (7) and (8) in equation (4).
\[{\left( { - \dfrac{{{a^2}}}{r}p} \right)^2} + {\left( { - \dfrac{{{a^2}}}{r}q} \right)^2} = {a^2}\]
\[\dfrac{{{a^4}}}{{{r^2}}}{p^2} + \dfrac{{{a^4}}}{{{r^2}}}{q^2} = {a^2}\]
\[\dfrac{{{a^4}}}{{{r^2}}}({p^2} + {q^2}) = {a^2}\]
\[{p^2} + {q^2} = \dfrac{{{r^2}}}{{{a^2}}}\]
Hence, the required condition is \[{p^2} + {q^2} = \dfrac{{{r^2}}}{{{a^2}}}\].
Note: You can directly solve the equation without finding the slope of the tangent if you know the formula for the equation of tangent to the circle at a point (h, k), that is, \[hx + ky - {a^2} = 0\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE