Answer
Verified
429.9k+ views
Hint: As derivative of a function of real variable measures the sensitivity to change of the function value with respect to change in its argument. Derivatives are a fundamental tool of calculus.
Use chain rule to find the derivative of $f(x)=\sqrt{\sin \left( 2x \right)}$
Chain Rule:- $fg'(x).g'(x)$
Example: $\sin (5x)$ a competitive function.
$f(x)=\sin x\Rightarrow f'(x)=\cos x$
$g(x)=\sin x\Rightarrow g'(x)=5$
So, the derivative will be equal to
$\cos \left( 5x \right)5$
Complete step by step solution:
You know that, given function is
$f(x)=\sqrt{\sin \left( 2x \right)}$
Firstly, let $y=\sqrt{\sin \left( 2x \right)}$
And let $u=\sin \left( 2x \right)$
This mean $y={{u}^{\dfrac{1}{2}}}$
Therefore,
$\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{u}^{\dfrac{-1}{2}}}.2\cos \left( 2x \right)$
Which implies, as ${{u}^{\dfrac{-1}{2}}}=-\sqrt{u}$ therefore as you transfer to denominator it gets reprobated into $\sqrt{4}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}.\dfrac{2\cos 2x}{\sqrt{u}}$
And $'2'$ of denominator and $2$ of $'2\cos 2x'$ gets canceled.
Therefore, simplified equation will be
$\dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{u}}$
Replace $u=\sin 2x$ to get,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{\sin 2x}}$
Additional Information:
The chain rule tells us how to find the derivative of composite function.
The chain rule, formula is,
$\dfrac{d}{dx}\left[ f\left( f(x) \right) \right]=f'(g(x)g'(x))$
A function is composite if you can write it as $f(g(x))$. In other words, it is a function within a function, or a function of function. For example: $\cos \left( {{x}^{2}} \right)$ is composite because if we let $f(x)=\cos (x')$ and $g(x)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
$'g'$ is a function within $'f'$, so you call $'g'$ inner function and $'f'$ outer function. On the outer hand, $\cos (x).{{x}^{2}}$ is not a composite function. It is a product of $f(x)=\cos (x)$ and $g(x)={{x}^{2}}$ but neither function is within the other one. Usually, The only way to differentiate a composite function is to recognize that a function is composite and that the chain rule must be applied, You will not be able to differentiate correctly.
Note: Apply chain rule in given function. In some cases if you recognize composite functions you may get the inner and outer functions wrong. This will give you a derivative. For example, in the composite function ${{\cos }^{2}}(x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ Sometimes you may get confused by this type of question and think $\cos (x)$ is the outer function.
Use chain rule to find the derivative of $f(x)=\sqrt{\sin \left( 2x \right)}$
Chain Rule:- $fg'(x).g'(x)$
Example: $\sin (5x)$ a competitive function.
$f(x)=\sin x\Rightarrow f'(x)=\cos x$
$g(x)=\sin x\Rightarrow g'(x)=5$
So, the derivative will be equal to
$\cos \left( 5x \right)5$
Complete step by step solution:
You know that, given function is
$f(x)=\sqrt{\sin \left( 2x \right)}$
Firstly, let $y=\sqrt{\sin \left( 2x \right)}$
And let $u=\sin \left( 2x \right)$
This mean $y={{u}^{\dfrac{1}{2}}}$
Therefore,
$\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}{{u}^{\dfrac{-1}{2}}}.2\cos \left( 2x \right)$
Which implies, as ${{u}^{\dfrac{-1}{2}}}=-\sqrt{u}$ therefore as you transfer to denominator it gets reprobated into $\sqrt{4}$
$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{2}.\dfrac{2\cos 2x}{\sqrt{u}}$
And $'2'$ of denominator and $2$ of $'2\cos 2x'$ gets canceled.
Therefore, simplified equation will be
$\dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{u}}$
Replace $u=\sin 2x$ to get,
$\Rightarrow \dfrac{dy}{dx}=\dfrac{\cos 2x}{\sqrt{\sin 2x}}$
Additional Information:
The chain rule tells us how to find the derivative of composite function.
The chain rule, formula is,
$\dfrac{d}{dx}\left[ f\left( f(x) \right) \right]=f'(g(x)g'(x))$
A function is composite if you can write it as $f(g(x))$. In other words, it is a function within a function, or a function of function. For example: $\cos \left( {{x}^{2}} \right)$ is composite because if we let $f(x)=\cos (x')$ and $g(x)={{x}^{2}}$ then $\cos \left( {{x}^{2}} \right)=f\left( g\left( x \right) \right)$
$'g'$ is a function within $'f'$, so you call $'g'$ inner function and $'f'$ outer function. On the outer hand, $\cos (x).{{x}^{2}}$ is not a composite function. It is a product of $f(x)=\cos (x)$ and $g(x)={{x}^{2}}$ but neither function is within the other one. Usually, The only way to differentiate a composite function is to recognize that a function is composite and that the chain rule must be applied, You will not be able to differentiate correctly.
Note: Apply chain rule in given function. In some cases if you recognize composite functions you may get the inner and outer functions wrong. This will give you a derivative. For example, in the composite function ${{\cos }^{2}}(x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ the outer function is ${{x}^{2}}$ and the inner function is $\cos (x)$ Sometimes you may get confused by this type of question and think $\cos (x)$ is the outer function.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers