Answer
Verified
360.9k+ views
Hint: The angle formed by the cone's height and slant height is known as the semi-vertical angle and it is half of the vertical angle. We also know that the tan is defined as the ratio of perpendicular and base in the right-angled triangle. We are also familiar with the value of $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$.
Complete step-by-step solution:
We have given that the height of the cone is 9 cm and the vertical angle is 60degree.
So, the angle between the height and radius is half of the vertical angle. i.e., 30degree
We know that the angle CAB is 30degree, we assumed the angle CAB is equal to a and the radius of the cone is equal to r.
So,
$ \Rightarrow \tan a = \dfrac{{BC}}{{AC}}$
$ \Rightarrow \tan {30^ \circ } = \dfrac{r}{9}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and substitute it
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{r}{9}$
Multiplying the both side by 9, we get
$ \Rightarrow \dfrac{9}{{\sqrt 3 }} = r$
$ \Rightarrow r = 3\sqrt 3 $
We know that the diameter is the double of radius
So,
Diameter of cone
$ = 2r$
$ = 2 \times 3\sqrt 3 $
$ = 6\sqrt 3 $
The diameter of the cone is $6\sqrt 3 $ .
Note: We should also note that the formula for calculating the slant height is \[l = \sqrt {{r^2} + {h^2}} \] if we have the values of r, h. We should also know the lateral surface area is \[S = \pi rl\] , where l is the slant height, r is radius and h is the height of the cone.
Complete step-by-step solution:
We have given that the height of the cone is 9 cm and the vertical angle is 60degree.
So, the angle between the height and radius is half of the vertical angle. i.e., 30degree
We know that the angle CAB is 30degree, we assumed the angle CAB is equal to a and the radius of the cone is equal to r.
So,
$ \Rightarrow \tan a = \dfrac{{BC}}{{AC}}$
$ \Rightarrow \tan {30^ \circ } = \dfrac{r}{9}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and substitute it
$ \Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{r}{9}$
Multiplying the both side by 9, we get
$ \Rightarrow \dfrac{9}{{\sqrt 3 }} = r$
$ \Rightarrow r = 3\sqrt 3 $
We know that the diameter is the double of radius
So,
Diameter of cone
$ = 2r$
$ = 2 \times 3\sqrt 3 $
$ = 6\sqrt 3 $
The diameter of the cone is $6\sqrt 3 $ .
Note: We should also note that the formula for calculating the slant height is \[l = \sqrt {{r^2} + {h^2}} \] if we have the values of r, h. We should also know the lateral surface area is \[S = \pi rl\] , where l is the slant height, r is radius and h is the height of the cone.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE