Answer
Verified
459k+ views
Hint: To obtain the required differential equation of the given equation we will eliminate ‘A’ and ‘B’ from it by taking its first and second order derivatives and solving them together to get the required solution.
Product rule of derivatives$\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{d}{{dx}}\left( v \right) + v.\dfrac{d}{{dx}}\left( u \right)$, $\dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\,\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$
Complete step-by-step answer:
To find the differential equation of a given function $y = {e^x}\left( {A\cos x + B\sin x} \right)$we have to remove ‘A’ and ‘B’ from it by taking derivatives.
As, there are two variables present in the given equation. So, we differentiate it two times, first we differentiate it to calculate first order derivative $\dfrac{{dy}}{{dx}}$ and then using result we calculate second order derivative$\dfrac{{{d^2}y}}{{d{x^2}}}$.
$y = {e^x}\left( {A\cos x + B\sin x} \right)$
Differentiating w.r.t. ‘x’ we have
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {A\cos x + B\sin x} \right)} \right\}$
Applying product rule of derivative on right hand side
$\dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( {A\cos x + B\sin x} \right) + \left( {A\cos x + B\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left\{ {A\left( { - \sin x} \right) + B\left( {\cos x} \right)} \right\} + \left( {A\cos x + B\sin x} \right){e^x}$
Taking common and simplify above equation
$\dfrac{{dy}}{{dx}} = {e^x}\left\{ { - A\sin x + B\cos x + A\cos x + B\sin x} \right\}$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + {e^x}\left( {A\cos x + B\sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + y$ $\because y = {e^x}\left( {A\cos x + B\sin x} \right)$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$
Again differentiating above equation to find its double derivative w.r.t. ‘x’
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( { - A\sin x + B\cos x} \right) + \left( { - A\sin x + B\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \left( { - A\sin x + B\cos x} \right){e^x}$
Taking ${e^x}$ common from right hand side and simplifying it
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x - A\sin x + B\cos x} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + {e^x}\left( { - A\sin x + B\cos x} \right)$
Using vale of $\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$ calculated above in above equation we have
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \dfrac{{dy}}{{dx}} - y$
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - {e^x}\left( {A\cos x + B\sin x} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - y \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + 2y = 0 \\
$
Above equations don’t contain ‘A’ and ‘B’.
So, we can say that this is the required differential equation of the given equations $y = {e^x}\left( {A\cos x + B\sin x} \right)$
Note: To find the differential equation of any given equation we are just required to eliminate the constant present in the given equation. If there is only one constant then we differentiate the given equation only one time to get the required solution but in case if there are two constants then we have to differentiate it up to a double derivative to find the corresponding differential equation.
Product rule of derivatives$\dfrac{d}{{dx}}\left( {u.v} \right) = u.\dfrac{d}{{dx}}\left( v \right) + v.\dfrac{d}{{dx}}\left( u \right)$, $\dfrac{d}{{dx}}(\sin x) = \cos x,\,\,\,\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x$
Complete step-by-step answer:
To find the differential equation of a given function $y = {e^x}\left( {A\cos x + B\sin x} \right)$we have to remove ‘A’ and ‘B’ from it by taking derivatives.
As, there are two variables present in the given equation. So, we differentiate it two times, first we differentiate it to calculate first order derivative $\dfrac{{dy}}{{dx}}$ and then using result we calculate second order derivative$\dfrac{{{d^2}y}}{{d{x^2}}}$.
$y = {e^x}\left( {A\cos x + B\sin x} \right)$
Differentiating w.r.t. ‘x’ we have
$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left\{ {{e^x}\left( {A\cos x + B\sin x} \right)} \right\}$
Applying product rule of derivative on right hand side
$\dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( {A\cos x + B\sin x} \right) + \left( {A\cos x + B\sin x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left\{ {A\left( { - \sin x} \right) + B\left( {\cos x} \right)} \right\} + \left( {A\cos x + B\sin x} \right){e^x}$
Taking common and simplify above equation
$\dfrac{{dy}}{{dx}} = {e^x}\left\{ { - A\sin x + B\cos x + A\cos x + B\sin x} \right\}$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + {e^x}\left( {A\cos x + B\sin x} \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\sin x + B\cos x} \right) + y$ $\because y = {e^x}\left( {A\cos x + B\sin x} \right)$
Or we can write above equation as
$\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$
Again differentiating above equation to find its double derivative w.r.t. ‘x’
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\dfrac{d}{{dx}}\left( { - A\sin x + B\cos x} \right) + \left( { - A\sin x + B\cos x} \right)\dfrac{d}{{dx}}\left( {{e^x}} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \left( { - A\sin x + B\cos x} \right){e^x}$
Taking ${e^x}$ common from right hand side and simplifying it
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x - A\sin x + B\cos x} \right)$
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + {e^x}\left( { - A\sin x + B\cos x} \right)$
Using vale of $\dfrac{{dy}}{{dx}} - y = {e^x}\left( { - A\sin x + B\cos x} \right)$ calculated above in above equation we have
$\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{dy}}{{dx}} = {e^x}\left( { - A\cos x - B\sin x} \right) + \dfrac{{dy}}{{dx}} - y$
$
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - {e^x}\left( {A\cos x + B\sin x} \right) \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + y = - y \\
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} - 2\dfrac{{dy}}{{dx}} + 2y = 0 \\
$
Above equations don’t contain ‘A’ and ‘B’.
So, we can say that this is the required differential equation of the given equations $y = {e^x}\left( {A\cos x + B\sin x} \right)$
Note: To find the differential equation of any given equation we are just required to eliminate the constant present in the given equation. If there is only one constant then we differentiate the given equation only one time to get the required solution but in case if there are two constants then we have to differentiate it up to a double derivative to find the corresponding differential equation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE