Answer
Verified
469.2k+ views
Hint: As per the given information in the question, abscissa means x- axis’s point so x \[{\text{ = 1}}\]. We can calculate the slope of the curve using \[\dfrac{{{\text{dy}}}}{{{\text{dx}}}}\] method. And also remember the information that tangent and normal are perpendicular to each other. And finally, we need to write the equation of the line using point-slope form.
Complete step by step solution: Given curve \[{\text{3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}}\],
First of all calculating the coordinates of the point that can be given as ,
\[
{\text{x = 1,}} \\
{\text{y = 3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}} \\
{\text{ = 3 - 4 + 7}} \\
{\text{ = 6}} \\
{\text{(x,y) = (1,6)}} \\
\]
Now, calculating the slope of tangent to the given curve at the designated coordinate,
\[
{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}_{{\text{x = 1}}}}{\text{ = (9}}{{\text{x}}^{\text{2}}}{\text{ - 4}}{{\text{)}}_{{\text{x = 1}}}} \\
{\text{ = 9(1) - 4}} \\
{\text{m = 5}} \\
\]
Hence as we know the slope and point so we can write the equation of line as ,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = 5(x - 1)}} \\
\Rightarrow {\text{y - 6 = 5x - 5}} \\
\Rightarrow {\text{5x - y + 1 = 0}} \\
\]
Above is the equation of tangent and now using the perpendicular condition to calculate the slope of normal’s line.
\[
{{\text{m}}_1}{m_2} = - 1 \\
{\text{as, }}{m_1} = 5 \\
\Rightarrow {m_2} = \dfrac{{ - 1}}{5} \\
\]
Now, again using point slope method to write the equation of normal,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = }}\dfrac{{ - 1}}{5}{\text{(x - 1)}} \\
\Rightarrow {\text{5y - 30 = - x + 1}} \\
\Rightarrow {\text{5y + x = 31 = 0}} \\
\]
Hence , \[{\text{5y - 30 = - x + 1}}\] is equation of normal.
Note: In common usage, the abscissa refers to the horizontal (x) axis and the ordinate refers to the vertical (y) axis of a standard two-dimensional graph.
A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.
Complete step by step solution: Given curve \[{\text{3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}}\],
First of all calculating the coordinates of the point that can be given as ,
\[
{\text{x = 1,}} \\
{\text{y = 3}}{{\text{x}}^{\text{3}}}{\text{ - 4x + 7}} \\
{\text{ = 3 - 4 + 7}} \\
{\text{ = 6}} \\
{\text{(x,y) = (1,6)}} \\
\]
Now, calculating the slope of tangent to the given curve at the designated coordinate,
\[
{{\text{(}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}{\text{)}}_{{\text{x = 1}}}}{\text{ = (9}}{{\text{x}}^{\text{2}}}{\text{ - 4}}{{\text{)}}_{{\text{x = 1}}}} \\
{\text{ = 9(1) - 4}} \\
{\text{m = 5}} \\
\]
Hence as we know the slope and point so we can write the equation of line as ,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = 5(x - 1)}} \\
\Rightarrow {\text{y - 6 = 5x - 5}} \\
\Rightarrow {\text{5x - y + 1 = 0}} \\
\]
Above is the equation of tangent and now using the perpendicular condition to calculate the slope of normal’s line.
\[
{{\text{m}}_1}{m_2} = - 1 \\
{\text{as, }}{m_1} = 5 \\
\Rightarrow {m_2} = \dfrac{{ - 1}}{5} \\
\]
Now, again using point slope method to write the equation of normal,
\[
{\text{y - }}{{\text{y}}_{\text{1}}}{\text{ = m(x - }}{{\text{x}}_{\text{1}}}{\text{)}} \\
\Rightarrow {\text{y - 6 = }}\dfrac{{ - 1}}{5}{\text{(x - 1)}} \\
\Rightarrow {\text{5y - 30 = - x + 1}} \\
\Rightarrow {\text{5y + x = 31 = 0}} \\
\]
Hence , \[{\text{5y - 30 = - x + 1}}\] is equation of normal.
Note: In common usage, the abscissa refers to the horizontal (x) axis and the ordinate refers to the vertical (y) axis of a standard two-dimensional graph.
A tangent to a curve is a line that touches the curve at one point and has the same slope as the curve at that point. A normal to a curve is a line perpendicular to a tangent to the curve.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE