Find the equation of the perpendicular bisector of $AB$ where $A$ and $B$ are the points $\left( {3,6} \right)$and $\left( { - 3,4} \right)$ respectively. Also, find its point of intersection with
i) $x$-axis
ii) $y$-axis
Answer
Verified
511.8k+ views
Hint: Since, it is given that it is a perpendicular bisector therefore, it will divide the line into two equal parts. Take a point P such that the distance PA=PB and then solve this equation using a line formula.
It is given that $A = \left( {3,6} \right)$ and$B = \left( { - 3,4} \right)$.
Now, we know that the equation of the perpendicular bisector of $AB$ will be the locus of the points which will be equidistant from $A$ and $B$.
Let us assume a point P(x,y) on the perpendicular bisector.
Therefore,
$PA = PB$
To simplify the formula of line formula we are going to square both sides,
${\left( {PA} \right)^2} = {\left( {PB} \right)^2}$
Note: Make sure you take square of the terms only once.
On applying the simplified line formula, we get,
${\left( {x - 3} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2}$
On opening the brackets, we get,
${x^2} + {3^2} - 2\left( 3 \right)\left( x \right) + {y^2} + {6^2} - 2\left( 6 \right)\left( y \right) = {x^2} + {3^2} + 2\left( 3 \right)\left( x \right) + {y^2} + {4^2} - 2\left( y \right)\left( 4 \right)$
On cancelling the common terms,
$9 - 6x + 36 - 12y = 9 + 6x + 16 - 8y$
Again cancelling the common terms on the above steps, we get,
$12x + 4y - 20 = 0$
Taking 4 out common from all the terms,
$4\left( {3x + y - 5} \right) = 0$
Therefore, we can say that,
$3x + y - 5 = 0$ is the required equation.
Therefore, the equation of the perpendicular bisector of $AB$ where $A$ and $B$ are the points $\left( {3,6} \right)$and $\left( { - 3,4} \right)$ respectively.
It is given that $A = \left( {3,6} \right)$ and$B = \left( { - 3,4} \right)$.
Now, we know that the equation of the perpendicular bisector of $AB$ will be the locus of the points which will be equidistant from $A$ and $B$.
Let us assume a point P(x,y) on the perpendicular bisector.
Therefore,
$PA = PB$
To simplify the formula of line formula we are going to square both sides,
${\left( {PA} \right)^2} = {\left( {PB} \right)^2}$
Note: Make sure you take square of the terms only once.
On applying the simplified line formula, we get,
${\left( {x - 3} \right)^2} + {\left( {y - 6} \right)^2} = {\left( {x + 3} \right)^2} + {\left( {y - 4} \right)^2}$
On opening the brackets, we get,
${x^2} + {3^2} - 2\left( 3 \right)\left( x \right) + {y^2} + {6^2} - 2\left( 6 \right)\left( y \right) = {x^2} + {3^2} + 2\left( 3 \right)\left( x \right) + {y^2} + {4^2} - 2\left( y \right)\left( 4 \right)$
On cancelling the common terms,
$9 - 6x + 36 - 12y = 9 + 6x + 16 - 8y$
Again cancelling the common terms on the above steps, we get,
$12x + 4y - 20 = 0$
Taking 4 out common from all the terms,
$4\left( {3x + y - 5} \right) = 0$
Therefore, we can say that,
$3x + y - 5 = 0$ is the required equation.
Therefore, the equation of the perpendicular bisector of $AB$ where $A$ and $B$ are the points $\left( {3,6} \right)$and $\left( { - 3,4} \right)$ respectively.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
Write an application to the principal requesting five class 10 english CBSE
Difference between mass and weight class 10 physics CBSE
What is Commercial Farming ? What are its types ? Explain them with Examples
What are five examples of facts and opinions class 10 english CBSE
Which state has the longest coastline in India A Tamil class 10 social science CBSE
10 examples of evaporation in daily life with explanations