Answer
Verified
497.4k+ views
Hint: So we have to find the expansion of ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$ using binomial theorem. Take a value $a$ and $b$ from ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$. Use binomial theorem. You will get the answer.
Complete step-by-step answer:
According to the binomial theorem, the ${{(r+1)}^{th}}$ term in the expansion of ${{(a+b)}^{n}}$ is,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
The above term is a general term or ${{(r+1)}^{th}}$ term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent $n$.
Binomial theorem states that for any positive integer $n$, the $n$ power of the sum of two numbers a and b may be expressed as the sum of $(n+1)$ terms of the form.
The final expression follows from the previous one by the symmetry of $a$ and $b$ in the first expression, and by comparison, it follows that the sequence of binomial coefficients in the formula is symmetrical.
A simple variant of the binomial formula is obtained by substituting $1$ for $b$ so that it involves only a single variable.
In the Binomial expression, we have
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So the coefficients ${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.
You can see them ${}^{n}{{C}_{r}}$ being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$ because, we know that,
$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to ${{2}^{n-1}}$.
The middle term depends upon the value of $n$,
It $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).
It $n$ is odd: then the total number of terms in the expansion of ${{(a+b)}^{n}}$ is $n+1$ (even).
It $n$is a positive integer,
\[{{(a-b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}-{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
For binomial expansion first, let's do a small pairing inside the bracket.
So now let$a=3{{x}^{2}}$and$b=a(2x-3a)$.
Now let's expand this as is normally done for two-digit expansion.
${{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}={{(3{{x}^{2}})}^{3}}-3{{(3{{x}^{2}})}^{2}}\times a(2x-3a)+3(3{{x}^{2}})\times {{a}^{2}}{{(2x-3a)}^{2}}-{{a}^{3}}{{(2x-3a)}^{3}}$
So simplifying in a simple manner we get,
$\begin{align}
& {{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}=27{{x}^{6}}-3(9{{x}^{4}})(2ax-3{{a}^{2}})+9{{a}^{2}}{{x}^{2}}(4{{x}^{2}}+9{{a}^{2}}-12ax)-{{a}^{3}}(8{{x}^{3}}-27{{a}^{3}}-3.4{{x}^{2}}.3a+3.9{{a}^{2}}.2x) \\
& =27{{x}^{6}}-27{{x}^{4}}(2ax-3{{a}^{2}})+36{{a}^{2}}{{x}^{4}}+81{{a}^{4}}{{x}^{2}}-108{{a}^{3}}{{x}^{3}}-8{{a}^{3}}{{x}^{3}}+27{{a}^{6}}+36{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x \\
& =27{{x}^{6}}-54a{{x}^{5}}+81{{a}^{2}}{{x}^{4}}+36{{a}^{2}}{{x}^{4}}+117{{a}^{4}}{{x}^{2}}-116{{a}^{3}}{{x}^{3}}+27{{a}^{6}}-54{{a}^{5}}x \\
& =27{{x}^{6}}-54a{{x}^{5}}+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}} \\
\end{align}$
The Expansion ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$is$27{{x}^{6}}-54{{x}^{5}}a+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{ e3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}}$.
Note: Read the question in a careful manner. Don’t jumble within the concepts. You should know what to select as$a$ and $b$. We had assumed $a=3{{x}^{2}}$ and $b=a(2x-3a)$. So you can assume it in your way. But keep in mind there should not be any confusion.
Complete step-by-step answer:
According to the binomial theorem, the ${{(r+1)}^{th}}$ term in the expansion of ${{(a+b)}^{n}}$ is,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
The above term is a general term or ${{(r+1)}^{th}}$ term. The total number of terms in the binomial expansion ${{(a+b)}^{n}}$is$(n+1)$, i.e. one more than the exponent $n$.
Binomial theorem states that for any positive integer $n$, the $n$ power of the sum of two numbers a and b may be expressed as the sum of $(n+1)$ terms of the form.
The final expression follows from the previous one by the symmetry of $a$ and $b$ in the first expression, and by comparison, it follows that the sequence of binomial coefficients in the formula is symmetrical.
A simple variant of the binomial formula is obtained by substituting $1$ for $b$ so that it involves only a single variable.
In the Binomial expression, we have
\[{{(a+b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}+{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
So the coefficients ${}^{n}{{C}_{0}},{}^{n}{{C}_{1}},............,{}^{n}{{C}_{n}}$ are known as binomial or combinatorial coefficients.
You can see them ${}^{n}{{C}_{r}}$ being used here which is the binomial coefficient. The sum of the binomial coefficients will be ${{2}^{n}}$ because, we know that,
$\sum\nolimits_{r=0}^{n}{\left( {}^{n}{{C}_{r}} \right)}={{2}^{n}}$
Thus, the sum of all the odd binomial coefficients is equal to the sum of all the even binomial coefficients and each is equal to ${{2}^{n-1}}$.
The middle term depends upon the value of $n$,
It $n$ is even: then the total number of terms in the expansion of${{(a+b)}^{n}}$ is $n+1$ (odd).
It $n$ is odd: then the total number of terms in the expansion of ${{(a+b)}^{n}}$ is $n+1$ (even).
It $n$is a positive integer,
\[{{(a-b)}^{n}}=={}^{n}{{C}_{0}}{{a}^{n}}{{\left( b \right)}^{0}}-{}^{n}{{C}_{1}}{{a}^{n-1}}{{\left( b \right)}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{\left( b \right)}^{2}}-{}^{n}{{C}_{3}}{{a}^{n-3}}{{\left( b \right)}^{3}}+...........+{}^{n}{{C}_{n}}{{a}^{0}}{{\left( b \right)}^{n}}\]
For binomial expansion first, let's do a small pairing inside the bracket.
So now let$a=3{{x}^{2}}$and$b=a(2x-3a)$.
Now let's expand this as is normally done for two-digit expansion.
${{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}={{(3{{x}^{2}})}^{3}}-3{{(3{{x}^{2}})}^{2}}\times a(2x-3a)+3(3{{x}^{2}})\times {{a}^{2}}{{(2x-3a)}^{2}}-{{a}^{3}}{{(2x-3a)}^{3}}$
So simplifying in a simple manner we get,
$\begin{align}
& {{\left[ 3{{x}^{2}}-a(2x-3a) \right]}^{3}}=27{{x}^{6}}-3(9{{x}^{4}})(2ax-3{{a}^{2}})+9{{a}^{2}}{{x}^{2}}(4{{x}^{2}}+9{{a}^{2}}-12ax)-{{a}^{3}}(8{{x}^{3}}-27{{a}^{3}}-3.4{{x}^{2}}.3a+3.9{{a}^{2}}.2x) \\
& =27{{x}^{6}}-27{{x}^{4}}(2ax-3{{a}^{2}})+36{{a}^{2}}{{x}^{4}}+81{{a}^{4}}{{x}^{2}}-108{{a}^{3}}{{x}^{3}}-8{{a}^{3}}{{x}^{3}}+27{{a}^{6}}+36{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x \\
& =27{{x}^{6}}-54a{{x}^{5}}+81{{a}^{2}}{{x}^{4}}+36{{a}^{2}}{{x}^{4}}+117{{a}^{4}}{{x}^{2}}-116{{a}^{3}}{{x}^{3}}+27{{a}^{6}}-54{{a}^{5}}x \\
& =27{{x}^{6}}-54a{{x}^{5}}+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}} \\
\end{align}$
The Expansion ${{(3{{x}^{2}}-2ax+3{{a}^{2}})}^{3}}$is$27{{x}^{6}}-54{{x}^{5}}a+117{{a}^{2}}{{x}^{4}}-116{{a}^{3}}{{x}^{ e3}}+117{{a}^{4}}{{x}^{2}}-54{{a}^{5}}x+27{{a}^{6}}$.
Note: Read the question in a careful manner. Don’t jumble within the concepts. You should know what to select as$a$ and $b$. We had assumed $a=3{{x}^{2}}$ and $b=a(2x-3a)$. So you can assume it in your way. But keep in mind there should not be any confusion.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE