Answer
Verified
430.5k+ views
Hint: First we will evaluate the right-hand of equation and then further the left-hand side of the equation. We will use the identity ${\sin ^2}x + {\cos ^2}x = 1$. Then we will try to factorise and simplify the terms so that the left-hand side matches the right-hand side.
Complete step-by-step solution:
We will start solving this question by directly using the double angle formula for $\cos $.
$
\Rightarrow \cos (2x) + 5\cos (x) + 3 = 0 \\
\Rightarrow 2{\cos ^2}(x) + 5\cos (x) + 3 = 0 \\
$
Now, if we factorise the equation further we will get,
$
\Rightarrow 2{\cos ^2}(x) + 5\cos (x) + 3 = 0 \\
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
$
Now if we solve separately for the value of $\cos $ we will get,
$
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
\Rightarrow 2\cos (x) + 3 = 0 \\
\Rightarrow 2\cos (x) = - 3 \\
\Rightarrow \cos (x) = \dfrac{{ - 3}}{2} \\
$
And the other value will be given by,
$
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
\Rightarrow \cos (x) + 1 = 0 \\
\Rightarrow \cos (x) = - 1 \\
$
Hence, the values of $\cos $ will be $ - 1,\dfrac{{ - 3}}{2}$.
Now, we know that $\cos (x) \in [ - 1,1]$ for all values of $x$.
And here, the value $\cos x = \dfrac{{ - 3}}{2}$ is not included in the range and the other value which is $\cos x = - 1$ is within the range which also implies the same way $\,\,\,\,\,x = 3\pi $ within the range $[0,2\pi ]$.
And if the range is not restricted, the value will be $x = \pi + 2n\pi ,\forall n \in Z$
Note: While choosing the side to solve, always choose the side where you can directly apply the trigonometric identities. Also, remember the trigonometric identities ${\sin ^2}x + {\cos ^2}x = 1$ and $\cos 2x = 2{\cos ^2}x - 1$. While applying the double angle identities, first choose the identity according to the terms you have then choose the terms from the expression involving which you are using the double angle identities. While modifying any identity make sure that when you back trace the identity, you get the same original identity. Also, remember that the range of $\cos $ function is from $ - 1\,$ to $ + 1$ and the range of $\sin $ function is also from $ - 1\,$ to $ + 1$.
Complete step-by-step solution:
We will start solving this question by directly using the double angle formula for $\cos $.
$
\Rightarrow \cos (2x) + 5\cos (x) + 3 = 0 \\
\Rightarrow 2{\cos ^2}(x) + 5\cos (x) + 3 = 0 \\
$
Now, if we factorise the equation further we will get,
$
\Rightarrow 2{\cos ^2}(x) + 5\cos (x) + 3 = 0 \\
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
$
Now if we solve separately for the value of $\cos $ we will get,
$
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
\Rightarrow 2\cos (x) + 3 = 0 \\
\Rightarrow 2\cos (x) = - 3 \\
\Rightarrow \cos (x) = \dfrac{{ - 3}}{2} \\
$
And the other value will be given by,
$
\Rightarrow (2\cos (x) + 3)(\cos (x) + 1) = 0 \\
\Rightarrow \cos (x) + 1 = 0 \\
\Rightarrow \cos (x) = - 1 \\
$
Hence, the values of $\cos $ will be $ - 1,\dfrac{{ - 3}}{2}$.
Now, we know that $\cos (x) \in [ - 1,1]$ for all values of $x$.
And here, the value $\cos x = \dfrac{{ - 3}}{2}$ is not included in the range and the other value which is $\cos x = - 1$ is within the range which also implies the same way $\,\,\,\,\,x = 3\pi $ within the range $[0,2\pi ]$.
And if the range is not restricted, the value will be $x = \pi + 2n\pi ,\forall n \in Z$
Note: While choosing the side to solve, always choose the side where you can directly apply the trigonometric identities. Also, remember the trigonometric identities ${\sin ^2}x + {\cos ^2}x = 1$ and $\cos 2x = 2{\cos ^2}x - 1$. While applying the double angle identities, first choose the identity according to the terms you have then choose the terms from the expression involving which you are using the double angle identities. While modifying any identity make sure that when you back trace the identity, you get the same original identity. Also, remember that the range of $\cos $ function is from $ - 1\,$ to $ + 1$ and the range of $\sin $ function is also from $ - 1\,$ to $ + 1$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE