How do you find the hypotenuse of an isosceles right triangle?
Answer
Verified
452.1k+ views
Hint: In this question, we have to find out the required expression from the given particulars.
We need to first consider what an isosceles right triangle is. For that we need to know the definition of an isosceles triangle right triangle
We need to apply Pythagoras theorem on this triangle, so we can find out the required solution.
Complete step-by-step solution:
We need to find the hypotenuse of an isosceles right triangle.
In geometry, an isosceles triangle is a triangle that has two sides of equal length.
In geometry, a right angled triangle is a triangle that has one right angle.
Let , ABC is an isosceles right triangle with \[\angle ABC = 90^\circ \].
Since it is also an isosceles triangle, let AB = BC.
Also as it is a right angle triangle we can apply Pythagoras theorem which states,
\[{\left( {Hypotenuse} \right)^2} = {\left( {Height} \right)^2} + {\left( {Base} \right)^2}\]
i.e.\[A{C^2} = A{B^2} + B{C^2}\]
i.e.\[A{C^2} = A{B^2} + A{B^2}\], [since, AB = BC].
Let us adding we get,
i.e.\[A{C^2} = 2A{B^2}\]
on taking square root on both sides we get,
i.e.\[AC = \sqrt {2A{B^2}} \]
on rewriting we get
i.e.\[AC = \sqrt 2 AB\]
Hence, the hypotenuse of an isosceles right triangle is \[\sqrt 2 \] $\times$ the equal side of the triangle.
Note: Right angled triangle:
In geometry, a right angled triangle is a triangle that has one right angle.
Pythagoras theorem states that,
If ABC is a right angled triangle then,
\[{\left( {Hypotenuse} \right)^2} = {\left( {Height} \right)^2} + {\left( {Base} \right)^2}\]
\[A{C^2} = A{B^2} + B{C^2}\]
Isosceles triangle:
In geometry, an isosceles triangle is a triangle that has two sides of equal length.
An isosceles triangles definition states it as a polygon that consists of two equal sides, two equal angles, three edges, three vertices and the sum of internal angles of a triangle equal to \[180^\circ \].
We need to first consider what an isosceles right triangle is. For that we need to know the definition of an isosceles triangle right triangle
We need to apply Pythagoras theorem on this triangle, so we can find out the required solution.
Complete step-by-step solution:
We need to find the hypotenuse of an isosceles right triangle.
In geometry, an isosceles triangle is a triangle that has two sides of equal length.
In geometry, a right angled triangle is a triangle that has one right angle.
Let , ABC is an isosceles right triangle with \[\angle ABC = 90^\circ \].
Since it is also an isosceles triangle, let AB = BC.
Also as it is a right angle triangle we can apply Pythagoras theorem which states,
\[{\left( {Hypotenuse} \right)^2} = {\left( {Height} \right)^2} + {\left( {Base} \right)^2}\]
i.e.\[A{C^2} = A{B^2} + B{C^2}\]
i.e.\[A{C^2} = A{B^2} + A{B^2}\], [since, AB = BC].
Let us adding we get,
i.e.\[A{C^2} = 2A{B^2}\]
on taking square root on both sides we get,
i.e.\[AC = \sqrt {2A{B^2}} \]
on rewriting we get
i.e.\[AC = \sqrt 2 AB\]
Hence, the hypotenuse of an isosceles right triangle is \[\sqrt 2 \] $\times$ the equal side of the triangle.
Note: Right angled triangle:
In geometry, a right angled triangle is a triangle that has one right angle.
Pythagoras theorem states that,
If ABC is a right angled triangle then,
\[{\left( {Hypotenuse} \right)^2} = {\left( {Height} \right)^2} + {\left( {Base} \right)^2}\]
\[A{C^2} = A{B^2} + B{C^2}\]
Isosceles triangle:
In geometry, an isosceles triangle is a triangle that has two sides of equal length.
An isosceles triangles definition states it as a polygon that consists of two equal sides, two equal angles, three edges, three vertices and the sum of internal angles of a triangle equal to \[180^\circ \].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
What is pollution? How many types of pollution? Define it
Voters list is known as A Ticket B Nomination form class 9 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE