Answer
Verified
429.3k+ views
Hint: Here, we will compare the given equation of the line by $\lambda $ and find the values of $x,y,z$ respectively. Then we will substitute these values in the equation of the plane as the line passes through it. This will give us the value of $\lambda $ and hence, we will be able to find the required image of the given line.
Complete step-by-step answer:
Given equation of the line is $\dfrac{{x - 1}}{3} = \dfrac{{y - 3}}{1} = \dfrac{{z - 4}}{{ - 1}}$
And, equation of the given plane is $2x - y + z + 3 = 0$
Now, first of all, we will equate the equation of the line to $\lambda $, hence we get,
$\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 4}}{1} = \lambda $
Now, we will cross multiply to find the values of $x,y,z$ respectively
Hence,
$x = 2\lambda + 1$
$y = 3 - \lambda $
$z = \lambda + 4$
Now, since the line is passing through the given plane.
Thus, the points $\left( {2\lambda + 1,3 - \lambda ,\lambda + 4} \right)$ represent any point on the plane.
Now, substituting these points in the equation of the plane, we get,
$ \Rightarrow 2\left( {2\lambda + 1} \right) - \left( {3 - \lambda } \right) + \left( {\lambda + 4} \right) + 3 = 0$
$ \Rightarrow 4\lambda + 2 - 3 + \lambda + \lambda + 4 + 3 = 0$
Solving further, we get,
$ \Rightarrow 6\lambda + 6 = 0$
Dividing both sides by 6, we get
$ \Rightarrow \lambda + 1 = 0$
Subtracting 1 from both the sides, we get
$ \Rightarrow \lambda = - 1$
Hence, substituting these values to find the values of $x,y,z$ respectively, we get,
$x = 2\left( { - 1} \right) + 1 = - 1$
$y = 3 - \left( { - 1} \right) = 4$
$z = - 1 + 4 = 3$
Hence, $x = - 1$, $y = 4$ and $z = 3$
Therefore, the required image of the given line is:
$\dfrac{{x + 1}}{3} = \dfrac{{y - 4}}{1} = \dfrac{{z - 3}}{{ - 1}}$
Hence, this is the required answer.
Note:
A line is an indefinite straight one-dimensional figure which is extending infinitely in both the directions whereas; a line segment is definite which means that it has two endpoints. Also, a plane is a two-dimensional figure consisting of two linear independent vectors. In geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point or a line. If the line is embedded in the plane, it is the entire line and if the line is parallel to the plane, it is an empty set and if it cuts the plane then it is a single point.
Complete step-by-step answer:
Given equation of the line is $\dfrac{{x - 1}}{3} = \dfrac{{y - 3}}{1} = \dfrac{{z - 4}}{{ - 1}}$
And, equation of the given plane is $2x - y + z + 3 = 0$
Now, first of all, we will equate the equation of the line to $\lambda $, hence we get,
$\dfrac{{x - 1}}{2} = \dfrac{{y - 3}}{{ - 1}} = \dfrac{{z - 4}}{1} = \lambda $
Now, we will cross multiply to find the values of $x,y,z$ respectively
Hence,
$x = 2\lambda + 1$
$y = 3 - \lambda $
$z = \lambda + 4$
Now, since the line is passing through the given plane.
Thus, the points $\left( {2\lambda + 1,3 - \lambda ,\lambda + 4} \right)$ represent any point on the plane.
Now, substituting these points in the equation of the plane, we get,
$ \Rightarrow 2\left( {2\lambda + 1} \right) - \left( {3 - \lambda } \right) + \left( {\lambda + 4} \right) + 3 = 0$
$ \Rightarrow 4\lambda + 2 - 3 + \lambda + \lambda + 4 + 3 = 0$
Solving further, we get,
$ \Rightarrow 6\lambda + 6 = 0$
Dividing both sides by 6, we get
$ \Rightarrow \lambda + 1 = 0$
Subtracting 1 from both the sides, we get
$ \Rightarrow \lambda = - 1$
Hence, substituting these values to find the values of $x,y,z$ respectively, we get,
$x = 2\left( { - 1} \right) + 1 = - 1$
$y = 3 - \left( { - 1} \right) = 4$
$z = - 1 + 4 = 3$
Hence, $x = - 1$, $y = 4$ and $z = 3$
Therefore, the required image of the given line is:
$\dfrac{{x + 1}}{3} = \dfrac{{y - 4}}{1} = \dfrac{{z - 3}}{{ - 1}}$
Hence, this is the required answer.
Note:
A line is an indefinite straight one-dimensional figure which is extending infinitely in both the directions whereas; a line segment is definite which means that it has two endpoints. Also, a plane is a two-dimensional figure consisting of two linear independent vectors. In geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point or a line. If the line is embedded in the plane, it is the entire line and if the line is parallel to the plane, it is an empty set and if it cuts the plane then it is a single point.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE