
Find the matrix A satisfying the matrix equation
$ \left[ {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right]A\left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] $
Answer
568.5k+ views
Hint: Here we will entitle the given matrix as B and C matrix and then will use the properties of the matrix, identity matrix and the inverse of the matrix. Then accordingly satisfying the conditions will find matrix A.
Complete step-by-step answer:
$ \left[ {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right]A\left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] $
Let us assume that –
$ B = \left[ {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right] $ and
$ C = \left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right] $
Also, Identity matrix $ I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] $
So, the given expression can be written as –
$ BAC = I $
Multiply the above expression with the matrix inverse of B.
$ \Rightarrow {B^{ - 1}}BAC = I.{B^{ - 1}} $
We know that product of any matrix with its inverse gives identity matrix and product of identity matrix with inverse gives inverse. Since the identity matrix multiplied with any matrix gives the matrix itself.
$ \Rightarrow IAC = {B^{ - 1}} $
Therefore,
$ \Rightarrow AC = {B^{ - 1}} $
Similarly, multiply the above expression with the matrix inverse of C.
$ \Rightarrow AC{C^{ - 1}} = {B^{ - 1}}.{C^{ - 1}} $
Apply the same concept, inverse of the matrix and the matrix gives identity matrix.
$ \Rightarrow AI = {B^{ - 1}}.{C^{ - 1}} $
By property-
$ \Rightarrow A = {B^{ - 1}}{C^{ - 1}} $ ..... (I)
Now, find the inverse of matrix B- first find the adjoint of the matrix and the determinant of the product of matrix and at last will place the values in the standard formula. $ {(B)^{ - 1}} = \dfrac{{adj(B)}}{{\left| B \right|}} $
$ \left| B \right| = \left| {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right| $
Expand the determinant-
$ \left| B \right| = 4 - 3 = 1 $
Adjoint of B $ = {\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 1}&2
\end{array}} \right]^1} $
$ adjB = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right] $
Now, inverse
$ {B^{ - 1}} = \dfrac{{adjB}}{{\left| B \right|}} $
Place values-
$ {B^{ - 1}} = \dfrac{{\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right]}}{{(1)}} $
Take negative sign common from the matrix
$ {B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right] $ ..... (II)
Similarly for the matrix C
$ \left| C \right| = \left| {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right| $
Expand the determinant-
$ \left| C \right| = 9 - 10 = - 1 $
Adjoint of C $ = {\left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 5} \\
{ - 2}&{ - 3}
\end{array}} \right]^1} $
$ adjC = \left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\
{ - 5}&{ - 3}
\end{array}} \right] $
Now, inverse
$ {C^{ - 1}} = \dfrac{{adjC}}{{\left| C \right|}} $
Place values-
$ {C^{ - 1}} = \dfrac{{\left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\
{ - 5}&{ - 3}
\end{array}} \right]}}{{( - 1)}} $
Take negative sign common from the matrix
$ {C^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&2 \\
5&3
\end{array}} \right] $ .... (III)
Place the values of equation (II) and (III) in (I)
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&2 \\
5&3
\end{array}} \right] $
Find the product of two matrices-
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
{2(3) + ( - 1)(5)}&{2(2) + ( - 1)(3)} \\
{ - 3(3) + 2(5)}&{( - 3)2 + 3(2)}
\end{array}} \right] $
Simplify
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
{6 - 5}&{4 - 3} \\
{ - 9 + 10}&{ - 6 + 6}
\end{array}} \right] $
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right] $
So, the correct answer is “$A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right] $ ”.
Note: In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Complete step-by-step answer:
$ \left[ {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right]A\left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] $
Let us assume that –
$ B = \left[ {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right] $ and
$ C = \left[ {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right] $
Also, Identity matrix $ I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] $
So, the given expression can be written as –
$ BAC = I $
Multiply the above expression with the matrix inverse of B.
$ \Rightarrow {B^{ - 1}}BAC = I.{B^{ - 1}} $
We know that product of any matrix with its inverse gives identity matrix and product of identity matrix with inverse gives inverse. Since the identity matrix multiplied with any matrix gives the matrix itself.
$ \Rightarrow IAC = {B^{ - 1}} $
Therefore,
$ \Rightarrow AC = {B^{ - 1}} $
Similarly, multiply the above expression with the matrix inverse of C.
$ \Rightarrow AC{C^{ - 1}} = {B^{ - 1}}.{C^{ - 1}} $
Apply the same concept, inverse of the matrix and the matrix gives identity matrix.
$ \Rightarrow AI = {B^{ - 1}}.{C^{ - 1}} $
By property-
$ \Rightarrow A = {B^{ - 1}}{C^{ - 1}} $ ..... (I)
Now, find the inverse of matrix B- first find the adjoint of the matrix and the determinant of the product of matrix and at last will place the values in the standard formula. $ {(B)^{ - 1}} = \dfrac{{adj(B)}}{{\left| B \right|}} $
$ \left| B \right| = \left| {\begin{array}{*{20}{c}}
2&1 \\
3&2
\end{array}} \right| $
Expand the determinant-
$ \left| B \right| = 4 - 3 = 1 $
Adjoint of B $ = {\left[ {\begin{array}{*{20}{c}}
2&{ - 3} \\
{ - 1}&2
\end{array}} \right]^1} $
$ adjB = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right] $
Now, inverse
$ {B^{ - 1}} = \dfrac{{adjB}}{{\left| B \right|}} $
Place values-
$ {B^{ - 1}} = \dfrac{{\left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right]}}{{(1)}} $
Take negative sign common from the matrix
$ {B^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right] $ ..... (II)
Similarly for the matrix C
$ \left| C \right| = \left| {\begin{array}{*{20}{c}}
{ - 3}&2 \\
5&{ - 3}
\end{array}} \right| $
Expand the determinant-
$ \left| C \right| = 9 - 10 = - 1 $
Adjoint of C $ = {\left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 5} \\
{ - 2}&{ - 3}
\end{array}} \right]^1} $
$ adjC = \left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\
{ - 5}&{ - 3}
\end{array}} \right] $
Now, inverse
$ {C^{ - 1}} = \dfrac{{adjC}}{{\left| C \right|}} $
Place values-
$ {C^{ - 1}} = \dfrac{{\left[ {\begin{array}{*{20}{c}}
{ - 3}&{ - 2} \\
{ - 5}&{ - 3}
\end{array}} \right]}}{{( - 1)}} $
Take negative sign common from the matrix
$ {C^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
3&2 \\
5&3
\end{array}} \right] $ .... (III)
Place the values of equation (II) and (III) in (I)
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
2&{ - 1} \\
{ - 3}&2
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
3&2 \\
5&3
\end{array}} \right] $
Find the product of two matrices-
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
{2(3) + ( - 1)(5)}&{2(2) + ( - 1)(3)} \\
{ - 3(3) + 2(5)}&{( - 3)2 + 3(2)}
\end{array}} \right] $
Simplify
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
{6 - 5}&{4 - 3} \\
{ - 9 + 10}&{ - 6 + 6}
\end{array}} \right] $
$ \Rightarrow A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right] $
So, the correct answer is “$A = \left[ {\begin{array}{*{20}{c}}
1&1 \\
1&0
\end{array}} \right] $ ”.
Note: In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

