
Find the mean of the first five multiples of $7$?
$\left( a \right){\text{ 18}}$
$\left( b \right){\text{ 20}}$
$\left( c \right){\text{ 15}}$
$\left( d \right){\text{ 24}}$
Answer
573.6k+ views
Hint: First of all we have to add the first five multiples of $7$ and then we have to find the mean. For mean, we will divide the added number by the total number of terms. In our case the total number of terms will be $5$, so we will divide it by $5$. And in this way, we can solve this problem.
Formula used:
Formula for the mean will be mean,
$m = \dfrac{{Sum{\text{ of terms}}}}{{Number{\text{ of terms}}}}$
Here,
$m$, will be the mean.
Complete step-by-step answer:
The first five multiples $7$ will be –
$7,14,21,28{\text{ and }}35$
Now we will find the mean so for this we have to use the mean formula, which is
$m = \dfrac{{Sum{\text{ of terms}}}}{{Number{\text{ of terms}}}}$
Here the number of terms is $5$
And the sum of terms will be calculated as $105$
Therefore,
$ \Rightarrow m = \dfrac{{7 + 14 + 21 + 28 + 35}}{5}$
On solving the above equation, we get
$ \Rightarrow m = \dfrac{{105}}{5}$
On dividing, we get
$ \Rightarrow m = 21$
Therefore, $21$ will be the mean of the first five multiples $7$.
Additional information: The cycle for finding the mean of a gathering of numbers is as per the following: Add together all the numbers for which we require to locate the normal. Separation this entirety by the number equivalent to the number of numbers we have added together.
Note: For mean questions, they will raise for the common of a group with variables, or they will raise to search out the worth to that the total of a group of numbers should be raised or lowered to search out a specific average. Just detain mind, that despite how odd the question seems to be, the method for locating the mean is unchanging.
Formula used:
Formula for the mean will be mean,
$m = \dfrac{{Sum{\text{ of terms}}}}{{Number{\text{ of terms}}}}$
Here,
$m$, will be the mean.
Complete step-by-step answer:
The first five multiples $7$ will be –
$7,14,21,28{\text{ and }}35$
Now we will find the mean so for this we have to use the mean formula, which is
$m = \dfrac{{Sum{\text{ of terms}}}}{{Number{\text{ of terms}}}}$
Here the number of terms is $5$
And the sum of terms will be calculated as $105$
Therefore,
$ \Rightarrow m = \dfrac{{7 + 14 + 21 + 28 + 35}}{5}$
On solving the above equation, we get
$ \Rightarrow m = \dfrac{{105}}{5}$
On dividing, we get
$ \Rightarrow m = 21$
Therefore, $21$ will be the mean of the first five multiples $7$.
Additional information: The cycle for finding the mean of a gathering of numbers is as per the following: Add together all the numbers for which we require to locate the normal. Separation this entirety by the number equivalent to the number of numbers we have added together.
Note: For mean questions, they will raise for the common of a group with variables, or they will raise to search out the worth to that the total of a group of numbers should be raised or lowered to search out a specific average. Just detain mind, that despite how odd the question seems to be, the method for locating the mean is unchanging.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
What are the factors of 100 class 7 maths CBSE

The value of 6 more than 7 is A 1 B 1 C 13 D 13 class 7 maths CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

AIM To prepare stained temporary mount of onion peel class 7 biology CBSE

Write a letter to the editor of the national daily class 7 english CBSE


